10.1002/anie.202000743
Angewandte Chemie International Edition
Practice; Oxford University Press: New York, 1998; e) R. A.
Sheldon, Pure Appl. Chem. 2000, 72, 1233; f) R. A. Sheldon,
Green Chem. 2007, 9, 1273; g) T. Newhouse, P. S. Baran, R.
W. Hoffmann, Chem. Soc. Rev. 2009, 38, 3010; h) P.
Anastas, N. Eghbali, Chem. Soc. Rev. 2010, 39, 301.
[3] For selected examples on Fe catalysts, see: a) G. F.
Emerson, R. Pettit, J. Am. Chem. Soc. 1962, 84, 4591; b) H.
Cherkaoui, M. Soufiaoui, R. Grée Tetrahedron 2001, 57,
2379; c) V. Branchadell, C. Crévisy, R. Grée, Chem. - Eur. J.
2003, 9, 2062.
[4] For selected examples on Rh catalysts, see: a) K. Tanaka, S.
Qiao, M. Tobisu, M. M.-C. Lo, G. C. Fu, J. Am. Chem. Soc.
2000, 122, 9870; b) R. Uma, M. K. Davies, C. Crévisy, R.
Grée, Eur. J. Org. Chem. 2001, 2001, 3141; c) K. Tanaka, G.
C. Fu, J. Org. Chem. 2001, 66, 8177; d) D. H. Leung, R. G.
Bergman, K. N. Raymond, J. Am. Chem. Soc. 2007, 129,
2746−2747; e) N. Ahlsten, H. Lundberg, B. Martín-Matute,
Green Chem. 2010, 12, 1628; f) S. Sahoo, H. Lundberg, M.
Edén, N. Ahlsten, W. Wan, X. Zou, B. Martín-Matute,
ChemCatChem 2012, 4, 243; g) A. B. Gómez, P. Holmberg,
J.-E. Backvall, B. Martín-Matute, RSC Adv. 2014, 4, 39519;
h) T.-L. Liu, T. W. Ng, Y. Zhao, J. Am. Chem. Soc. 2017,
139, 3643.
[5] For selected examples on Ru catalysts, see: a) V. Cadierno,
S. E. GarcíaGarrido, J. Gimeno, A. Varela-Álvarez, J. A.
Sordo, J. Am. Chem. Soc. 2006, 128, 1360; b) A.
Bartoszewicz, M. Livendahl, B. Martín-Matute, Chem. - Eur.
J. 2008, 14, 10547; c) J. W. Kim, T. Koike, M. Kotani, K.
Yamaguchi, N. Mizuno, Chem. - Eur. J. 2008, 14, 4104; d) A.
Bartoszewicz, B. Martín-Matute, Org. Lett. 2009, 11, 1749; e)
B. Lastra-Barreira, J. Diez, P. Crochet, Green Chem. 2009,
11, 1681; f) P. N. Liu, K. D. Ju, C. P. Lau, Adv. Synth. Catal.
2011, 353, 275; g) J. Díez, J. Gimeno, A. Lledós, F. J.
Suárez, C. Vicent, ACS Catal. 2012, 2, 2087; h) L. Bellarosa,
J. Díez, J. Gimeno, A. Lledós, F. J. Suárez, G. Ujaque, C.
Vicent, Chem. - Eur. J. 2012, 18, 7749; i) R. Wu, M. G.
Beauchamps, J. M. Laquidara, J. R. Sowa, Angew. Chem.
Int. Ed. 2012, 51, 2106; Angew. Chem. 2012, 124, 2148; j) V.
Bizet, X. Pannecoucke, J.-L. Renaud, D. Cahard, Adv. Synth.
Catal. 2013, 355, 1394; k) N. Arai, K. Sato, K. Azuma, T.
Ohkuma, Angew. Chem. Int. Ed. 2013, 52, 7500; Angew.
Chem. 2013, 125, 7648; l) S. Manzini, A. Poater, D. J.
Nelson, L. Cavallo, S. P. Nolan, Chem. Sci. 2014, 5, 180; m)
Marco, A. B. Gómez, A. Vázquez-Romero, M. S. G. Ahlquist,
B. Martín-Matute, J. Am. Chem. Soc. 2016, 138, 13408; The
direct photochemical isomerization of C=C disubstituted
allylic alcohol has been performed at 254 nm, see: d) R. L.
Sutar, S. Sen, O. Eivgi, G. Segalovich, I. Schapiro, O. Reany,
N. G. Lemcoff, Chem. Sci., 2018, 9, 1368; e) L. Lai, A. N. Li,
J. Zhou, Y. Guo, L. Lin, W. Chen, R. Wang, Org. Biomol.
Chem., 2017,15, 2185.
[9] For isomerization mechanisms, see: a) R. F. Heck, Organic
Reactions; John Wiley: New York, 1982; Vol 27, p 345; b) B.
M. Trost, R. J. Kulawiec, J. Am. Chem. Soc. 1993, 115, 2027;
c) J. E. Bäckvall, U. Andreasson, Tetrahedron Lett. 1993, 34,
5459; d) B. Martín-Matute, K. Bogar, M. Edin, F. B. Kaynak,
J. E. Bäckvall, Chem. Eur. J. 2005, 11, 5832; e) D. V.
McGrath, R. H. Grubbs, Organometallics 1994, 13, 224; f) D.
D. R. C. Van, M. Vailati, E. Bouwman, E. Drent, J. Mol. Catal.
A: Chem. 2000, 159, 163; g) V. Cadierno, S. E. García-
Garrido, A. Gimeno, J. Varela-Álvarez, J. A. Sordo, J. Am.
Chem. Soc. 2006, 128, 1360; h) M. Batuecas, M. A.
Esteruelas, C. García-Yebra, E. Oñate, Organometallics
2010, 29, 2166.
[10] For selected reviews, see: a) Y. Xi, H. Yi, A. Lei, Org.
Biomol. Chem. 2013, 11, 2387; b) C. K. Prier, D. A. Rankic,
D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322; c) J. Xuan,
W.-J. Xiao, Angew. Chem. Int. Ed. 2012, 51, 6828; Angew.
Chem. 2012, 124, 6934; d) J. W. Tucker, C. R. J.
Stephenson, Shining light on photoredox catalysis: theory
and synthetic applications. J. Org. Chem. 2012, 77, 1617; e)
M. A. Ischay, T. P. Yoon, Eur. J. Org. Chem. 2012, 2012,
3359; f) M. Reckenthäler, A. G. Griesbeck, Adv. Synth. Catal.
2013, 355, 2727; g) J. M. R. Narayanam, C. R. J. Chem. Soc.
Rev. 2011, 40, 102; h) N. A. Romero, D. A. Nicewicz, Chem.
Rev. 2016, 116, 10075; i) Y. Qin, L. Zhu, S. Luo, Chem. Rev.
2017, 117, 9433; j) M. H. Shaw, J. Twilton, D. W. C.
MacMillan, J. Org. Chem. 2016, 81, 6898; k) D. M. Schultz,
T. P. Yoon, Science 2014, 343, 1239176; l) K. L. Skubi, R. B.
Travis, and T. P. Yoon, Chem. Rev. 2016, 116, 10035.
[11] For selected examples of quinuclidine-based HAT strategy,
see: a) J. L. Jeffrey, J. A. Terrett, D. W. C MacMillan,
Science 2015, 349, 1532; (b) S. Mukherjee, B. Maji, A.
Tlahuext-Aca, F. Glorius, J. Am. Chem. Soc. 2016, 138,
16200; (c) C. Le, Y. Liang, R. W. Evans, X. Li, D. W. C.
MacMillan, Nature 2017, 547, 79; (d) J. Ye, I. Kalvet, F.
Schoenebeck, T. Rovis, Nat. Chem. 2018, 10, 1037; (e) H.-B.
Yang, A. Feceu, D. B. C. Martin, ACS Catal. 2019, 9, 5708;
(f) M. A. Ashley, C. Yamauchi, J. C. K. Chu, S. Otsuka, H.
Yorimitsu, T. Rovis, Angew. Chem., Int. Ed. 2019, 58, 4002;
(g) V. Dimakos, H. Y. Su, G. E. Garrett, M. S. Taylor, J. Am.
Chem. Soc. 2019, 141, 5149; (h) Y. Kawamata, M.Yan, Z.
Liu, D.-H. Bao, J. Chen, J. T. Starr, P. S. Baran, J. Am.
Chem. Soc. 2017, 139, 7448; For selected examples of
intra- and intermolecular HAT strategy, see: i) K. Qvortrup, D.
A. Rankic, D. W. C. MacMillan, J. Am. Chem. Soc. 2014,
136, 626; j) D. Hager, D. W. C. MacMillan, J. Am. Chem.
Soc. 2014, 136, 16986; k) J. Jin, D. W. C. MacMillan, Angew.
Chem. Int. Ed. 2015, 54, 1565; Angew. Chem. 2015, 127,
1585; l) J. D. Cuthbertson, D. W. C. MacMillan, Nature 2015,
519, 74. m) G. J. Choi, Q. Zhu, D. C. Miller, C. J. Gu, R. R.
Knowles, Nature 2016, 539, 268; n) J. C. K. Chu, T. Rovis,
Nature 2016, 539, 272; o) S. Mukherjee, R. A. Garza-
Sanchez, A.Tlahuext-Aca, F. Glorius, Angew. Chem., Int. Ed.
2017, 56, 14723; p) K. A. Margrey, W. L. Czaplyski, D. A.
Nicewicz, E. J. Alexanian, J. Am. Chem. Soc. 2018, 140,
M. Ito, S. Kitahara, T. Ikariya, J. Am. Chem. Soc. 2005, 127,
6172.
[6] For selected examples on Ir catalysts, see: a) I. R. Baxendale,
A.-L. Lee, S. V. Ley, Synlett 2002, 516; b) H. Li, C. Mazet, J.
Am. Chem. Soc. 2015, 137, 10720; c) L. Mantilli, D. Gérard,
S. Torche, C. Besnard, C. Mazet, Angew. Chem. Int. Ed.
2009, 48, 5143; Angew. Chem. 2009, 121, 5245; d) L.
Mantilli, C. Mazet, Tetrahedron Lett. 2009, 50, 4141; e) L.
Mantilli, C. Mazet, Chem. Commun. 2010, 46, 445.
[7] For selected examples on Pd catalysts, see: a) M. Kraus,
Collect. Czech. Chem. Commun. 1972, 37, 460; b) D. B.
Grotjahn, C. R. Larsen, J. L. Gustafson, R. Nair, A. Sharma,
J. Am. Chem. Soc. 2007, 129, 9592; c) G. Sabitha, S.
Nayak, M. Bhikshapathi, J. S. Yadav, Org. Lett. 2011, 13,
382; d) E. Larionov, L. Lin, L. Guenee, C. Mazet, J. Am.
Chem. Soc. 2014, 136, 16882.
[8] For transition-metal-free strategies, see: a) H.-X. Zheng, Z.-F.
Xiao, C.-Z. Yao, Q.-Q. Li, X.-S. Ning, Y.-B. Kang, Y. Tang,
Org. Lett. 2015, 17, 6102; b) K. Mondal, B. Mondal, S. C Pan,
J. Org. Chem. 2016, 81, 4835; c) S. Martinez-Erro, A. Sanz-
8
This article is protected by copyright. All rights reserved.