2814
K. Lange, M. P. Schneider / Tetrahedron: Asymmetry 15 (2004) 2811–2815
The absolute configurations were tentativelyassigned
based on the resulting carba-analogous phospholipids
(see Section 8) derived thereof, while attempting to ob-
tain a crystalline derivate for an X-ray structure, the
ultimate confirmation.
of opposite absolute configurations. The here obtained
chiral building blocks are now available as mimics of
1,2-sn- and 2,3-sn-diglycerides for coupling reactions
with inositol phosphates to the corresponding carba-
analogues of inositol phospholipids. Theywere also
converted into the corresponding, enantiomeric carba-
analogues of phospholipids and ether lipids (PAF
analogues) (Scheme 7).19
7. Building blocks for PAF analogues
For the synthesis of the corresponding ether lipids we
had to resort to the lipase-catalyzed resolution of the
corresponding racemic ether derivate ( )-20. Thus,
mono alkylation of the 1,3-dithiane building block 16
led to racemic 19 from which 20 was obtained via clas-
sical chemical acylation (Scheme 5).
O
S
S
R
R
*
*
O
O
O-
OR´
N+
HO
OR´
P
O
BrC12H25
R = Me, C11H23, C16H33
R´= C12H25, COC11H23
KO-t-but
18-crown-6
THF
reflux
AcCl
NEt3
S
S
S
S
S
S
CH2Cl2
Scheme 7. Syntheses of carba-analogues of phospholipids and ether-
lipids from the enzymatically prepared chiral building blocks.
H
quant.
75%
HO
OH
HO
OC12H25
O
OC12H25
O
( )-19
( )-20
16
References
Scheme 5. Synthesis of the racemic precursor ( )-20.
1. Hajdu, J. Recent Res. Dev. Lipid Res. 1999, 3, 165;
Biochemistryof Lipids, Lipoproteins and Membranes ;
Vance, D. E., Vance, J. E., Eds.; Elsevier Science:
Amsterdam, 2002; Bibak, N.; Hajdu, J. Tetrahedron Lett.
2003, 44, 5875–5877, and references cited therein.
2. Review: Chao, W.; Olson, M. S. Biochem. J. 1993, 292,
617–629; Hanahan, D. J. Annu. Rev. Biochem. 1986, 55,
483–509.
The kinetic resolution (Scheme 6) of ( )-20, using lipase
SAM II (Pseudomonas sp.) proved to be the method of
choice. The enantiomers (+)-21 and (À)-21 were ob-
tained with >96 and 92% e.e., respectivelyas shown by
HPLC on a chiral support (Chiralcel OD-H).
3. Lin, A.; Morton, D. R.; Gorman, R. R. J. Clin. Invest.
1982, 70, 1058–1065.
4. Michel, L.; Denizot, Y.; Thomas, Y.; Jean-Louis, F.;
Pitton, C.; Beneviste, J. J. Immonul. 1988, 141, 948–953;
Michel, L.; Denizot, Y.; Thomas, Y.; Jean-Louis, F.;
Heslan, M.; Beneviste, J. J. Invest. Dermatol. 1990, 95,
576–581.
lipase SAMII
S
S
S
S
buffer pH7
MTBE
H
5. Andersch, P.; Jakob, B.; Schiefer, R.; Schneider, M. P. In
Molecular Mechanisms of Signalling and Membrane Trans-
port; Wirtz, K. W. A, Ed.; Springer: Berlin, 1997.
6. Andersch, P.; Jakob, B.; Haase, B.; Schneider, M. Indian
J. Chem. 1997, 36B.
O
OC12H25
HO
OC12H25
O
(+)-21
(+/-)-20
+
7. Yuan, W.; Berman, R. J.; Gelb, M. H. J. Am. Chem. Soc.
1987, 109, 8071–8081.
8. Jain, M. K.; Tao, W.; Roger., J.; Arensen, C.; Eibl, H.;
Yu, B.-Z. Biochemistry 1991, 30, 10256.
9. Bosies, E.; Herrmann, D. B. J.; Bicker, U.; Gall, R.;
Pahlke, W. Lipids 1987, 22, 947.
10. Winkler, J. D.; Eris, T.; Sung, C. M.; ChabotFletcher, M.;
Mayer, R. J.; Surette, M. E.; Chilton, F. H. J. Pharmacol.
Exp. Therap. 1996, 279(2), 956–966.
11. Schlag, G.; Redl, H. World J. Surgery 1996, 20(4),
406–410.
S
S
S
S
NaOH
MeOH
H
H
quant.
HO
OC12H25
O
OC12H25
O
(-)-21
22
Scheme 6. Lipase catalyzed resolution of ( )-20.
12. Takakuwa, T.; Endo, S.; Inada, K.; Kasai, T.; Yamada,
Y.; Ogawa, M. Res. Commun. Mol. Pathol. Phamocol.
1997, 98, 43–52.
13. Modollel, M.; Andreesen, R.; Pahlke, W.; Brugger, U.;
Munder, P. G. Cancer Res. 1979, 39, 4681–4886; Berdel,
W. E.; Bausert, W. R. E.; Fink, U.; Rastetter, J.; Munder,
P. G. Anticancer Res. 1981, 1, 345–352; Scholar, E. M.
Cancer Lett. 1986, 33, 199–204; Wieder, T.; Haase, A.;
Geilen, C. C.; Orfanos, C. E. Lipids 1995, 30, 389–393;
8. Conclusion
In summary, we have demonstrated in this preliminary
communication that lipase––catalyzed transformations
can be used effectivelyto transform both achiral 1,3-
diols and their racemic analogues into pure enantiomers