T. Nihira et al. / Carbohydrate Research 350 (2012) 94–97
97
reverse phosphorolytic activity remaining after incubation of
Cphy1019 (2.5 M) at various temperatures for 10 min in 25 mM
MOPS–NaOH (pH 6.5) and at various pH values at 30 °C for 30 min,
Universities, France) for helpful discussion on classification of
phosphorylases. This work was supported in part by a grant from
the Program for Promotion of Basic Research Activities for Innova-
tive Biosciences (PROBRAIN) and MEXT’s program ‘Promotion of
Environmental Improvement for Independence of Young Research-
ers’ under the Special Coordination Funds for Promoting Science
and Technology.
l
respectively.
1.5. Kinetic analysis
The reverse phosphorolytic reactions were carried out at 30 °C
with 548 nM Cphy1019 and various concentrations of
L-rhamnose
Supplementary data
(1–40 mM) as the acceptor or b- -glucose 1-phosphate (0.5–
D
10 mM) as the donor with 10 mM of each opposite substrate in
25 mM MOPS–NaOH (pH 6.5). The kinetic parameters were
calculated by curve-fitting the experimental data with the
Michaelis–Menten equation {v = kcat [E]0ꢁ[S]/(Km + [S])} using Grafit
version 7.0.2 (Erithacus Software Ltd, London, UK).
Supplementary data associated with this article can be found, in
References
1. Luley-Goedl, C.; Nidetzky, B. Biotechnol. J. 2010, 5, 1324–1338.
2. Kitaoka, M.; Hayashi, K. Trends Glycosci. Glycotechnol. 2002, 14, 35–50.
3. Ohdan, K.; Fujii, K.; Yanase, M.; Takaha, T.; Kuriki, T. Biocatal. Biotransform.
2006, 24, 77–81.
1.6. Structural analysis
4. Suzuki, M.; Kaneda, K.; Nakai, Y.; Kitaoka, M.; Taniguchi, H. New Biotechnol.
2009, 26, 137–142.
5. Nishimoto, M.; Kitaoka, M. Biosci. Biotechnol. Biochem. 2007, 71, 2101–2104.
6. Nishimoto, M.; Kitaoka, M. Carbohydr. Res. 2009, 344, 2573–2576.
7. Nakajima, M.; Nishimoto, M.; Kitaoka, M. Biosci. Biotechnol. Biochem. 2010, 74,
1652–1655.
8. Nakajima, M.; Nishimoto, M.; Kitaoka, M. J. Biol. Chem. 2009, 284, 19220–
19227.
9. Senoura, T.; Ito, S.; Taguchi, H.; Higa, M.; Hamada, S.; Matsui, H.; Ozawa, T.; Jin,
S.; Watanabe, J.; Wasaki, J.; Ito, S. Biochem. Biophys. Res. Commun. 2011, 408,
701–706.
10. Nihira, T.; Nakai, H.; Chiku, K.; Kitaoka, M. Appl. Microbiol. Biotechnol., 2012.
11. De Groeve, M. R.; De Baere, M.; Hoflack, L.; Desmet, T.; Vandamme, E. J.;
Soetaert, W. Protein Eng. Des. Sel. 2009, 22, 393–399.
12. Nakai, H.; Petersen, B. O.; Westphal, Y.; Dilokpimol, A.; Abou Hachem, M.;
Duus, J. Ø.; Schols, H. A.; Svensson, B. Protein Eng. Des. Sel. 2010, 23, 781–787.
13. Desmet, T.; Soetaert, W. Process Biochem. 2012, 47, 11–17.
14. Cantarel, B. L.; Coutinho, P. M.; Rancurel, C.; Bernard, T.; Lombard, V.;
Henrissat, B. Nucleic Acids Res. 2009, 37, D233–D238.
The product for structural determination was generated in a
reaction mixture containing 636 nM Cphy1019, 50 mM b-
cose 1-phosphate, and 50 mM -rhamnose in a final volume of
500 L of 100 mM MOPS–NaOH (pH 6.5) incubated at 30 °C for
D-glu-
L
l
20 h. The reaction mixture was desalted using Amberlite MB-3
(Organo, Tokyo, Japan) and separated on a Toyopearl HW-40F col-
umn (26 mm / ꢂ 320 mm; Tosoh, Tokyo, Japan) equilibrated with
distilled water at a flow rate of 0.5 mL/min. Fractions containing
the product were collected and desalted again using Amberlite
MB-3, followed by lyophilization to obtain 5.2 mg of the purified
disaccharide (16 lmol, yield 64%).
The one-dimensional (1H and 13C) and two-dimensional
[double-quantum-filtered correlation spectroscopy (DQF-COSY),
heteronuclear single-quantum coherence (HSQC), and heteronu-
clear multiple-bond correlation (HMBC)] nuclear magnetic
resonance (NMR) spectra of the product were taken in D2O with
2-methyl-2-propanol as an internal standard using a Bruker Avance
500 spectrometer (Bruker Biospin, Rheinstetten, Germany). Proton
signals were assigned based on the DQF-COSY spectrum. 13C signals
were assigned with the HSQC spectrum, based on the assignment of
proton signals. The linkage position in each disaccharide was deter-
mined by detecting inter-ring cross peaks in the HMBC spectrum.
15. Bendtsen, J. D.; Nielsen, H.; von Heijne, G.; Brunak, S. J. Mol. Biol. 2004, 340,
783–795.
16. Nielsen, H.; Engelbrecht, J.; Brunak, S.; von Heijne, G. Protein Eng. 1997, 10, 1–6.
17. Inoue, Y.; Yasutake, N.; Oshima, Y.; Yamamoto, Y.; Tomita, T.; Miyoshi, S.;
Yatake, T. Biosci. Biotechnol. Biochem. 2002, 66, 2594–2599.
18. Chaen, H.; Yamamoto, T.; Nishimoto, T.; Nakada, T.; Fukuda, S.; Sugimoto, T.;
Kurimto, M.; Tsujisaka, Y. J. Appl. Glycosci. 1999, 46, 423–429.
19. Ehrmann, M. A.; Vogel, R. F. FEMS Microbiol. Lett. 1998, 169, 81–86.
20. Andersson, U.; Levander, F.; Rådström, P. J. Biol. Chem. 2001, 276, 42707–42713.
21. Warnick, T. A.; Methé, B. A.; Leschine, S. B. Int. J. Syst. Evol. Microbiol. 2002, 52,
1155–1160.
Acknowledgments
22. Nakajima, M.; Nihira, T.; Nishimoto, M.; Kitaoka, M. Appl. Microbiol. Biotechnol.
2008, 78, 465–471.
23. Honda, Y.; Kitaoka, M.; Hayashi, K. Biochem. J. 2004, 377, 225–232.
24. Toukach, P. V. J. Chem. Inf. Model. 2011, 51, 159–170.
25. Lowry, O. H.; Lopez, J. A. J. Biol. Chem. 1946, 162, 421–428.
We thank the staffs of Instrumental Analysis Center for Food
Chemistry of National Food Research Institute for recording NMR
spectra and Dr. Bernard Henrissat (CNRS and Aix-Marseille