A R T I C L E S
Rajca et al.
delocalization. Notably, thiophene-based annelations of linear
â-oligothiophenes give helical carbon-sulfur (C2S)n oligomers
for large n, possessing moderate curvature characteristic of
helicenes (Figure 1).15-17 Such esthetically pleasing structures
are also associated with cross-conjugated π-systems for the
carbon-carbon frameworks.18-21 In contrast, analogous carbon-
sulfur oligomers derived from R-oligothiophenes are planar,
quasi-linear, with conjugated π-systems (thienoacenes).22-26
In these sulfur-rich annelated oligomers, all sulfur atoms are
positioned at the molecular periphery, facilitating multiple short
intermolecular S‚‚‚S contacts, which may increase the effective
dimensionality of the electronic structure, leading to enhanced
transport properties. The relevant examples are improved
mobility in organic field effect transistors,27,28 formation of
neutral organic metals,29 organic conductor-to-semiconductor
phase transformations,30 and increased critical temperatures in
organic superconductors.31 Furthermore, cross-conjugated π-sys-
tems have attracted recent attention because of their unusually
robust optical properties; however, the studies of their electronic
properties are in the early stages.18-21
extended [n]helicenes.17,32-34 In this aspect, solution-based
(rather than photochemical) synthetic methodologies for non-
racemic [n]helicenes and applications of [n]helicenes as organic
materials have become topics of current interest.35-44
Following the preliminary communication of racemic syn-
thesis of [7]helicene 1 (Figure 1),45 we now report the improved
racemic synthesis, asymmetric synthesis, and resolution of
carbon-sulfur [7]helicenes.14,46-48 Also, crystal structures,
determinations of barrier for racemization, and chirooptical and
cyclic voltammetric studies for 1 and related compounds are
described.
Results and Discussion
Racemic Synthesis of [7]Helicene 1. The synthesis of [7]-
helicene rac-1 consists of two iterations (Scheme 1). Each
iteration consists of two key steps, connection of thiophene
derivatives at their â-positions and annelation to form a new
thiophene ring.45
In the first iteration, 4,4′-dibromo-3,3′-bithienyl (2) is obtained
from 3,4-dibromothiophene, using optimized conditions for the
Li/Br exchange, followed by oxidation of the resultant 3-bromo-
4-thienyllithium with CuCl2.49 Selective 5,5′-dilithiation (R,R′-
An additional motivation to develop syntheses of such
helically annelated â-oligothiophenes stems from the well-
known strong chiral, especially chirooptical, properties of
(32) (a) Newman, M. S.; Lutz, W. B.; Lednicer, D. J. Am. Chem. Soc. 1955,
77, 3420-3421. (b) Newman, M. S.; Lednicer, D. J. Am. Chem. Soc. 1956,
78, 4765-4770. (c) Newman, M. S.; Darlak, R. S.; Tsai, L. J. Am. Chem.
Soc. 1967, 89, 6191-6193.
(12) â-Oligothiophene as a cyclic trimer: Hart, H.; Sasaoka, M. J. Am. Chem.
Soc. 1978, 100, 4326-4327.
(13) â-Oligothiophene as a cyclic tetramer: (a) Kauffmann, T.; Greving, B.;
Ko¨nig, J.; Mitschker, A.; Woltermann, A. Angew. Chem., Int. Ed. Engl.
1975, 14, 713-714. (b) Kauffmann, T. Angew. Chem., Int. Ed. Engl. 1979,
18, 1-19.
(33) (a) Martin, R. H. Angew. Chem., Int. Ed. Engl. 1974, 13, 649-659. (b)
[11], [12], and [14]helicenes: Martin, R. H.; Bayes, M. Tetrahedron 1975,
31, 2135-2137. (c) Martin, R. H.; Libert, V. J. Chem. Res., Synop. 1980,
130-131.
(14) Miyasaka, M.; Rajca, A. Synlett 2004, 177-182.
(15) (C2S)n oligoacetylenic sulfides: Lee, A. W. M.; Yeung, A. B. W.; Yuen,
M. S. M.; Zhang, H.; Zhao, X.; Wong, W. Y. Chem. Commun. 2000, 75-
76.
(34) (a) [7], [9], [11], [13], [15]helicenes with alternant thiophene and benzene
rings: Yamada, K.; Ogashiwa, S.; Tanaka, H.; Nakagawa, H.; Kawazura,
H. Chem. Lett. 1981, 343-346. (b) Racemic [5], [7], [9], [11]helicenes
with alternate thiophene and benzene rings: Caronna, T.; Catellani, M.;
Luzatti, Malpezzi, L.; Meille, S. V.; Mele, A.; Richter, C.; Sinisi, R. Chem.
Mater. 2001, 13, 3906-3914.
(16) (CS2)n oligomers and polymers of carbon disulfide: (a) Zmolek, P. B.;
Sohn, H.; Gantzel, P. K.; Trogler, W. C. J. Am. Chem. Soc. 2001, 123,
1199-1207. (b) Frapper, G.; Saillard, J.-Y. J. Am. Chem. Soc. 2000, 122,
5367-5370. (c) Chou, J.-H.; Rauchfuss, T. B. Z. Natursforsch., B: Chem.
Sci. 1997, 52, 1549 - 1552. (d) Genin, H.; Hoffmann, R. J. Am. Chem.
Soc. 1995, 117, 12328-12335. (e) Gompper, R.; Knieler, R.; Polborn, K.
Z. Natursforsch., B: Chem. Sci. 1993, 48, 1621-1624.
(35) (a) Urbano, A. Angew. Chem., Int. Ed. 2003, 42, 3986-3989. (b) Schmuck,
C. Angew. Chem., Int. Ed. 2003, 42, 2448-2452.
(36) (a) Katz, T. J. Angew. Chem., Int. Ed. 2000, 39, 1921-1923. (b) Verbiest,
T.; Van Elshocht, S.; Kauranen, M.; Hellemans, L.; Snauwaert, J.; Nuckolls,
C.; Katz, T. J.; Persoons, A. Science 1998, 282, 913-915. (c) Nuckolls,
C.; Katz, T. J.; Katz, G.; Collings, P. J.; Castellanos, L. J. Am. Chem. Soc.
1999, 121, 79-88. (d) Paruch, K.; Vyklincky´, L.; Katz, T. J.; Incarvito, C.
D.; Rheingold, A. L. J. Org. Chem. 2000, 65, 8774-8782. (e) Phillips, K.
E. S.; Katz, T. J.; Jockusch, S.; Lovinger, A. J.; Turro, N. J. J. Am. Chem.
Soc. 2001, 123, 11899-11907. (f) Vyklincky´, L.; Eichhorn, S. H.; Katz,
T. J. Chem. Mater. 2003, 15, 3594-3601.
(17) Annelations of various aromatic rings were considered in terms of number
of rings per helical turn: Meurer, P. P.; Vo¨gtle, F. Helical Molecules in
Organic Chemistry. Top. Curr. Chem. 1985, 127, 1-76.
(18) Nielsen, M. B.; Schreiber, M.; Baek, Y. G.; Seiler, P.; Lecomte, S.; Boudon,
C.; Tykwinski, R. R.; Gisselbrecht, J.-P.; Gramlich, V.; Skinner, P. J.;
Bosshard, C.; Gu¨nther, P.; Gross, M.; Diederich, F. Chem.-Eur. J. 2001,
7, 3263-3280.
(19) (a) Zhao, Y.; Tykwinski, R. R. J. Am. Chem. Soc. 1999, 121, 458-459.
(b) Zhao, Y.; McDonald, R.; Tykwinski, R. R. J. Org. Chem. 2002, 67,
2805-2812.
(37) (a) Teply´, F.; Stara´, I. G.; Stary´, I.; Kolla´rovi_c, A.;?Saman, D.; Vysko_cil,
S.; Fiedler, P. J. Org. Chem. 2003, 68, 5193-5197. (b) Teply´, F.; Stara´, I.
G.; Stary´, I.; Kolla´rovi_c, A.;?Saman, D.; Rul´ı×f0ek, L.; Fiedler, P. J. Am.
Chem. Soc. 2002, 124, 9175-9180.
(20) Gaab, K. M.; Thompson, A. L.; Xu, J.; Martinez, T. J.; Bardeen, C. J. J.
Am. Chem. Soc. 2003, 125, 9288-9289.
(38) Ogawa, Y.; Toyama, M.; Karikomi, M.; Seki, K.; Haga, K.; Uyehara, T.
Tetrahedron Lett. 2003, 44, 2167-2170.
(21) (a) Londergan, T. M.; You, Y.; Thompson, M. E.; Weber, W. P.
Macromolecules 1998, 31, 2784-2788. (b) Wilson, J. N.; Windscheif, P.
M.; Evans, U.; Myrick, M. L.; Bunz, U. H. F. Macromolecules 2002, 35,
8681-8683.
(39) Carren˜o, M. C.; Garc´ıa-Cerrada, S.; Urbano, A. J. Am. Chem. Soc. 2001,
123, 7929-7930.
(40) Tanaka, K.; Suzuki, H.; Osuga, H. J. Org. Chem. 1997, 62, 4465-4470.
(41) (a) Dubois, F.; Gingras, M. Tetrahedron Lett. 1998, 39, 5039-5040. (b)
Gingras, M.; Dubois, F. Tetrahedron Lett. 1999, 40, 1309-1312.
(42) (a) Field, J. E.; Muller, G.; Riehl, J. P.; Venkataraman, D. J. Am. Chem.
Soc. 2003, 125, 11808-11809. (b) Field, J. E.; Hill, T. J.; Venkataraman,
D. J. Org. Chem. 2003, 68, 6071-6078.
(22) R,R′-Bis(thieno[3,2-b:2′,3′-d]thiophene) as an active layer in organic field
effect transistors: Li, X.-C.; Sirringhaus, H.; Garnier, F.; Holmes, A. B.;
Moratti, S. C.; Feeder, N.; Clegg, W.; Teat, S. J.; Friend, R. H. J. Am.
Chem. Soc. 1998, 120, 2206-2207.
(23) Mazaki, Y.; Kobayashi, K. Tetrahedron Lett. 1989, 30, 3315-3318.
(24) Sato, V.; Mazaki, Y.; Kobayashi, K.; Kobayashi, T. J. Chem. Soc., Perkin
Trans. 2 1992, 765-770.
(43) (a) Larsen, J.; Bechgaard, K. J. Org. Chem. 1996, 61, 1151-1152. (b)
Larsen, J.; Bechgaard, K. Acta Chem. Scand. 1996, 50, 71-76; Acta Chem.
Scand. 1996, 50, 77-82.
(25) Zhang, X.; Matzger, A. J. J. Org. Chem. 2003, 68, 9813-9815.
(26) Oyaizu, K.; Iwasaki, T.; Tsukahara, Y.; Tsuchida, E. Macromolecules 2004,
37, 1257-1270.
(44) Racemic oligophenylenes with helical connectivity and low barriers for
racemization: Han, S.; Bond, A. D.; Disch, R. L.; Holmes, D.; Schulman,
J. M.; Teat, S. J.; Vollhardt, K. P. C.; Whitener, G. D. Angew. Chem., Int.
Ed. 2002, 41, 3223-3227. (b) Han, S.; Anderson, D. R.; Bond, A. D.;
Chu, H. V.; Disch, R. L.; Holmes, D.; Schulman, J. M.; Teat, S. J.;
Vollhardt, K. P. C.; Whitener, G. D. Angew. Chem., Int. Ed. 2002, 41,
3227-3230.
(27) Bromley, S. T.; Mas-Torrent, M.; Hadley, P.; Rovira, C. J. Am. Chem.
Soc. 2004, 126, 6544-6545.
(28) Xue, J.; Forrest, S. R. Appl. Phys. Lett. 2001, 79, 3714-3716.
(29) Tanaka, H.; Okano, Y.; Kobayashi, H.; Suzuki, W.; Kobayashi, A. Science
2001, 291, 285-287.
(30) Laukhina, E.; Tkacheva, V.; Chekhlov, A.; Yagubskii, E.; Wojciechowski,
R.; Ulanski, J.; Vidal-Gancedo, J.; Veciana, J.; Laukhin, V.; Rovira, C.
Chem. Mater. 2004, 16, 2471-2479.
(45) Rajca, A.; Wang, H.; Pink, M.; Rajca, S. Angew. Chem., Int. Ed. 2000, 39,
4481-4483.
(46) Determination of the absolute configuration of (-)-1 by vibrational circular
dichroism spectroscopy: Friedman, T. B.; Cao, X.; Wang, H.; Rajca, A.;
Nafie, L. A. J. Phys. Chem. A 2003, 107, 7692-7696.
(31) (a) Urayama, H.; Yamochi, H.; Saito, G.; Nozawa, K.; Sugano, T.;
Kinoshita, M.; Sato, S.; Oshima, K.; Kawamoto, A.; Tanaka, J. Chem. Lett.
1988, 55-58. (b) Williams, J. M.; Schultz, A. J.; Geiser, U.; Carlson, K.
D.; Kini, A. M.; Wang, H. H.; Kwok, W.-K.; Whangbo, M.-H.; Schirber,
J. E. Science 1991, 252, 1501-1508.
(47) Miyasaka, M.; Rajca, A.; Pink, M.; Rajca, S. Chem.-Eur. J., in press.
(48) Dithieno[2,3-b:3′,2′-d]thiophene: de Jong, F.; Janssen, M. J. J. Org. Chem.
1971, 36, 1645-1648.
9
15212 J. AM. CHEM. SOC. VOL. 126, NO. 46, 2004