LETTER
Synthesis of the Bicyclic [7.3.0] Enediyne
2109
H
H
H
H
H
H
H
H
OH
H
O
N
Cl
O
O
4
H
Me
H
H
H
13
H
N
O
H
Cl
H
4
O
H
O
5
8
O
13
H
OH
H
5
8
O
H
H
H
Me
H
HO
O
H
OMe
Sugar
Me
Me
10
1
Figure 3 NOE Correlations observed in 11b and 10.
E.; Doyle, T. W.; Matson, J. A. J. Am. Chem. Soc. 1992, 114,
7946.
well as the atropisomerization is yet to be resolved, the
syntheses described herein will facilitate the total synthe-
sis of maduropeptin chromophore 1. Further studies based
on the above findings are currently underway.
(5) (a) Kobayashi, S.; Ashizawa, S.; Takahashi, Y.; Sugiura, Y.;
Nagaoka, M.; Lear, M. J.; Hirama, M. J. Am. Chem. Soc.
2001, 123, 11294. (b) Sato, I.; Toyama, K.; Kikuchi, T.;
Hirama, M. Synlett 1998, 1308. (c) Inoue, M.; Kikuchi, T.;
Hirama, M. Tetrahedron Lett. 2004, 45, 6439.
(6) Phenol 3 was prepared from TBS ether2g of chloroisovanilin
through standard procedure in 87% overall yield:
Ph3PCHCO2Me, toluene, reflux, 2 h; H2, Pd/C, EtOAc, 10 h;
TBAF, THF, 30 min.
Acknowledgment
This work was supported by CREST, Japan Science and Technolo-
gy Agency (JST). We thank Dr. Chizuko Kabuto for her assistance
in X-ray crystallographic analysis, and Mr. Kazuo Sasaki for NMR
spectroscopic analysis. A fellowship to N. K. from the Japan Socie-
ty for the Promotion of Science (JSPS) for Young Japanese Scien-
tists is gratefully acknowledged.
(7) (a) Kawata, S.; Hirama, M. Tetrahedron Lett. 1998, 39,
8707. (b) Sato, I.; Kikuchi, T.; Hirama, M. Chem. Lett. 1999,
511. (c) Kitaori, K.; Furukawa, Y.; Yoshimoto, H.; Otera, J.
Tetrahedron Lett. 1998, 39, 3173. (d) Nambu, Y.; Endo, T.
Tetrahedron Lett. 1990, 31, 1723.
(8) Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 2, 635.
(9) Achatz, O.; Grandl, A.; Wanner, K. T. Eur. J. Org. Chem.
1999, 1967.
References
(1) (a) Hanada, M.; Ohkuma, H.; Yonemoto, T.; Tomita, K.;
Ohbayashi, M.; Kamei, H.; Miyaki, T.; Konishi, M.;
Kawagichi, H.; Forenza, S. J. Antibiot. 1991, 44, 403.
(b) Schroeder, D. R.; Colson, K. L.; Klohr, S. E.; Zein, N.;
Langley, D. R.; Lee, M. S.; Matson, J. A.; Doyle, T. W. J.
Am. Chem. Soc. 1994, 116, 9351. (c) Zein, N.; Solomon,
W.; Colson, K. L.; Schroeder, D. R. Biochemistry 1995, 34,
11591. (d) Zein, N.; Reiss, P.; Bernatowicz, M.; Bolger, M.
Chem. Biol. 1995, 2, 451.
(2) For synthetic studies: (a) Nicolaou, K. C.; Koide, K.
Tetrahedron Lett. 1997, 38, 3667. (b) Nicolaou, K. C.;
Koide, K.; Xu, J.; Izraelewicz, M. H. Tetrahedron Lett.
1997, 38, 3671. (c) Suffert, J.; Toussaint, D. Tetrahedron
Lett. 1997, 38, 5507. (d) Roger, C.; Grierson, D. S.
Tetrahedron Lett. 1998, 39, 27. (e) Dai, W.-M.; Fong, K. C.;
Lau, C. W.; Zhou, L.; Hamaguchi, W.; Nishimoto, S. J. Org.
Chem. 1999, 64, 682. (f) Khan, S.; Kato, N.; Hirama, M.
Synlett 2000, 1494. (g) Kato, N.; Shimamura, S.; Khan, S.;
Takeda, F.; Kikai, Y.; Hirama, M. Tetrahedron 2004, 60,
3161.
(10) NMR data for 6: 1H NMR (500 MHz, CDCl3): d = 1.44 (s, 3
H), 1.52 (s, 3 H), 2.28 (br s, 1 H), 2.41 (d, 1 H, J = 2.4 Hz),
2.58 (br s, 1 H), 2.63 (dd, 1 H, J = 19.6, 3.0 Hz), 2.76 (ddd,
1 H, J = 19.6, 5.3, 2.4 Hz), 2.91 (br s, 1 H), 3.29 (br s, 1 H),
3.67–3.85 (m, 8 H), 3.94 (d, 1 H, J = 12.4 Hz), 3.96 (d, 1 H,
J = 12.4 Hz), 4.39 (d, 1 H, J = 11.1 Hz), 4.42 (d, 1 H,
J = 11.1 Hz), 4.77 (d, 1 H, J = 5.3 Hz), 5.19 (br s, 1 H), 5.48
(br t, 1 H, J = 6.0 Hz), 5.55 (br s, 1 H), 6.04 (br s, 1 H), 6.77
(d, 1 H, J = 8.0 Hz), 6.84 (d, 2 H, J = 8.4 Hz), 6.93 (d, 1 H,
J = 8.0 Hz), 7.23 (d, 2 H, J = 8.4 Hz). 13C NMR (125 MHz,
CDCl3): d = 27.33, 27.95, 28.88, 36.48, 38.06, 38.62, 55.10,
56.01, 65.85, 71.36, 73.59, 75.15, 79.22, 80.62, 85.65,
93.40, 97.18, 111.29, 112.61, 113.56, 121.67, 124.97,
128.15, 128.37, 129.36, 129.85, 131.34, 134.55, 139.74,
142.18, 151.80, 159.04, 171.19.
(11) Crystal data for 7: C34H31O7NClBr·C4H8O2, M = 769.08,
monoclinic, space group P21/c(#14), Dc = 1.481 g/cm3,
Z = 4, a = 19.180 (7) Å, b = 7.690 (2) Å, c = 23.430 (3) Å,
b = 93.330 (8)°, V = 3450 (4) Å3, F(000) = 1592.00,
m(MoKa) = 13.31 cm–1, R = 0.050, Rw = 0.056.
(12) (a) Iida, K.; Hirama, M. J. Am. Chem. Soc. 1994, 116,
10310. (b) Mita, T.; Kawata, S.; Hirama, M. Chem. Lett.
1998, 959.
(13) (a) Okude, Y.; Hirano, S.; Hiyama, T.; Nozaki, H. J. Am.
Chem. Soc. 1977, 99, 3179. (b) Takai, K.; Tagashira, M.;
Kuroda, T.; Oshima, K.; Utimoto, K.; Nozaki, H. J. Am.
Chem. Soc. 1986, 108, 6048. (c) Jin, H.; Uenishi, J.-I.;
Christ, W. J.; Kishi, Y. J. Am. Chem. Soc. 1986, 108, 5644.
(d) Stamos, D. P.; Sheng, X. C.; Chen, S. S.; Kishi, Y.
Tetrahedron Lett. 1997, 38, 6355.
(3) (a) Iida, K.; Fukuda, S.; Tanaka, T.; Hirama, M.; Imajo, S.;
Ishiguro, M.; Yoshida, K.; Otani, T. Tetrahedron Lett. 1996,
37, 4997. (b) Minami, Y.; Yoshida, K.; Azuma, R.; Saeki,
M.; Otani, T. Tetrahedron Lett. 1993, 34, 2633.
(c) Yoshida, K.; Minami, Y.; Azuma, R.; Saeki, M.; Otani,
T. Tetrahedron Lett. 1993, 34, 2637.
(4) (a) Kawata, S.; Ashizawa, S.; Hirama, M. J. Am. Chem. Soc.
1997, 119, 12012. (b) Leet, J. E.; Schroeder, D. R.; Langley,
D. R.; Colson, K. L.; Huang, S.; Klohr, S. E.; Lee, M. S.;
Golik, J.; Hofstead, S. J.; Doyle, T.; Matson, J. A. J. Am.
Chem. Soc. 1993, 115, 8432. (c) Leet, J. E.; Scroeder, D. R.;
Hofstead, S. J.; Golik, J.; Colson, K. L.; Huang, S.; Klohr, S.
Synlett 2004, No. 12, 2107–2110 © Thieme Stuttgart · New York