9-Fluoro-1-hydroxy-5-methyl-3-oxo-6,7-dihydro-3H,5H-pyrido[3,2,1-ij]quinoline-2-carboxylic Acid
Pyridin-4-ylmethylidenehydrazide (12a). Isonicotinic aldehyde (1.04 ml, 0.011 mol) was added to a solution
of hydrazide 11 (2.91 g, 0.01 mol) in hot ethanol (20 ml) and refluxed for 1 h. The product was cooled and the
precipitated crystals of pyridin-4-ylmethylidenehydrazide 12a were filtered off, washed with alcohol, and dried.
1
Yield 3.65 g (96%); mp 292-294°C (DMF–ethanol). H NMR spectrum, δ, ppm (J, Hz): 16.31 (1H, s, OH);
13.52 (1H, s, CONH); 8.66 (2H, d, J = 5.4, H-2',6'); 8.53 (1H, s, CH=N); 7.70-7.60 (3H, m, H-10 + H-3',5');
7.52 (1H, dd, J = 8.7 and 2.4, H-8); 5.16 (1H, m, 5-CH); 3.11 (1H, td, J = 17.1 and 5.4, Ha-7); 2.84 (1H, dd,
J = 12.9 and 3.8, He-7); 2.11 (1H, dt, J = 13.9 and 5.4, He-6); 1.94 (1H, tt, J = 13.6 and 5.0, Ha-6), 1.27 (3H, d,
J = 6.8, CH3). Found, %: C 63.23; H 4.61; N 14.80. C20H17FN4O3. Calculated, %: C 63.15; H 4.50; N 14.73.
Compounds 12b,c were prepared by a similar method.
9-Fluoro-1-hydroxy-5-methyl-3-oxo-6,7-dihydro-3H,5H-pyrido[3,2,1-ij]quinoline-2-carboxylic Acid
1
Pyridin-3-ylmethylidenehydrazide (12b) Yield 95%; mp 210-212°C (DMF–ethanol). H NMR spectrum,
δ, ppm (J, Hz): 16.47 (1H, s, OH); 13.46 (1H, s, CONH); 8.89 (1H, d, J = 1.9, H-2'); 8.62 (1H, dd, J = 4.9 and
1.6, H-6'); 8.57 (1H, s, CH=N); 8.14 (1H, dt, J = 8.0 and 2.1, H-4'); 7.64 (1H, dd, J = 8.7 and 2.8, H-10);
7.56-7.43 (2H, m, H-8 + H-5'); 5.16 (1H, m, 5-CH); 3.14 (1H, td, J = 17.3 and 5.4, Ha-7); 2.93 (1H, dd, J = 17.5
and 4.2, He-7); 2.11 (1H, dt, J = 13.5 and 5.3, He-6); 1.95 (1H, tt, J = 13.7 and 4.9, Ha-6); 1.27 (3H, d, J = 6.5,
CH3). Found, %: C 63.26; H 4.58; N 14.85. C20H17FN4O3. Calculated, %: C 63.15; H 4.50; N 14.73.
9-Fluoro-1-hydroxy-5-methyl-3-oxo-6,7-dihydro-3H,5H-pyrido[3,2,1-ij]quinoline-2-carboxylic Acid
1
Pyridin-2-ylmethylidenehydrazide (12c). Yield 90%; mp 266-268°C (DMF–ethanol). H NMR spectrum,
δ, ppm (J, Hz): 16.40 (1H, s, OH); 13.44 (1H, s, CONH); 8.64 (1H, d, J = 4.5, H-6'); 8.42 (1H, s, CH=N); 7.98
(1H, d, J = 7.8, H-3'); 7.88 (1H, td, J = 7.4 and 1.5, H-4'); 7.63 (1H, dd, J = 8.8 and 2.9, H-10); 7.51 (1H, dd,
J = 8.8 and 2.6, H-8); 7.43 (1H, td, J = 5.9 and 1.4, H-5'); 5.17 (1H, d, 5-CH); 3.14 (1H, td, J = 17.4 and 5.4,
Ha-7); 2.92 (1H, dd, J = 17.2 and 4.0, He-7); 2.10 (1H, dt, J = 13.8 and 5.4, He-6); 1.94 (1H, tt, J = 13.5 and 4.7,
Ha-6), 1.26 (3H, d, J = 6.5, CH3); Found, %: C 63.11; H 4.67; N 14.64. C20H17FN4O3. Calculated, %: C 63.15;
H 4.50; N 14.73.
The authors thank the National Institute for Allergic and Infectious Illnesses (USA) for carrying out the
study of the antitubercular properties of the compounds synthesized by us (contract No. 01-A1-45246) under the
TAACF program (Tuberculosis Antimicrobial Acquisition & Coordinating Facility).
REFERENCES
1.
2.
I. V. Ukrainets, O. V. Gorokhova, L. V. Sidorenko, and N. L. Bereznyakova, Khim. Geterotsikl. Soedin.,
1191 (2006). [Chem, Heterocycl. Comp., 42, 1032 (2006)].
A. Kleemann and J. Engel, Pharmaceutical Substances: Syntheses, Patents, Applications, Thieme
Medical Publishers, Stuttgart (2001).
3.
4.
G. A. Mokrushina, V. N. Charushin, and O. N. Chupakhin, Khim.-Farm. Zh., 29, No. 9, 5 (1995).
J. S. Chapman, A. Bertasso, L. M. Cummings, and N. H. Georgopapadakou, Antimicrob. Agents
Chemother., 39, 564 (1995).
5.
6.
7.
M. P. Wentland, R. B. Perni, P. H. Dorff, R. P. Brundage, M. J. Castaldi, J. A. Carlson, T. R. Bailey,
S. C. Aldous, P. M. Carabateas, E. R. Bacon, R. K. Kullnig, D. C. Young, M. G. Woods, S. D. Kingsley,
K. A. Ryan, D. Rosi, M. L. Drozd, and F. J. Dutko, Drug. Des. Discov., 15, 25 (1997).
S. C. Beasley, N. Cooper, L. Gowers, J. P. Gregory, A. F. Haughan, P. G. Hellewell, D. Macari,
J. Miotla, J. G. Montana, T. Morgan, R. Naylor, K. A. Runcie, B. Tuladhar, and J. B. Warneck, Bioorg.
Med. Chem. Lett., 8, 2629 (1998).
L. L. Klein, D. T. Chu, L. L. Shen, and J. J. Plattner, European Patent 0424802 1991;
1221