CHCH2N), 2.93-2.85 (m, 2H, CH2N), 2.73 (m, 3H, CH3N),
1.87-1.79 (m, 1H, CH2CH2), 1.77-1.73 (m, 1H, CH2CH2), 1.70-
1.62 (m, 1H, CH2CH2), 1.45-1.38 (m, 1H, CH2CH2); 13C NMR
(125.8 MHz, CDCl3): d 161.8 (NCN), 59.5 (CHN), 51.4 (NCH3),
48.1 (CHCH2N), 46.5 (NCH2CH2N), 41.7 (NCH2CH2N), 33.7
(CH2N), 29.2 (CH2CH2), 26.8 (CH2CH2); MS (APCI): m/z 183.1
(M + 1, 100); IR (neat): 2958, 2024, 1655, 1409, 1262, 1031 cm-1;
HRMS (CI): m/z 183.1605 (183.1610 calc. for C9H19N4 (M + H));
(CH2CH2); MS (APCI): m/z 197.1 (M + 1, 100); IR (neat): 2937,
2231, 2024, 1652, 1603, 1447, 1403, 1288, 1263, 1114 cm-1; HRMS
23
(CI): m/z 197.1774 (197.1766 calc. for C10H21N4 (M + H)); [a]D
-54.6 (c 1, CHCl3).
=
Acknowledgements
These investigations were supported by the Natural Sciences
and Engineering Research Council of Canada and the Canada
Foundation for Innovation.
23
[a]D = -50.4 (c 1, CHCl3).
N-(1,3-Dimethylimidazolidin-2-ylidene)((S)-pyrrolidin-
2-yl)methanamine (3)
References
To a solution of (S)-N-Boc-2-aminomethyl pyrrolidine17 (1.38 g,
6.9 mmol) in acetonitrile (25 mL) was added commercially
available 2-chloro-1,3-dimethylimidazolinium chloride (1.17 g,
6.9 mmol) and potassium carbonate (2.86 g, 21 mmol) at
room temperature and the solution was stirred at room tem-
perature for 2 days. The undissolved solids were removed
by filtration and the filtrate was concentrated under reduced
pressure. The residue was purified by flash chromatogra-
phy over silica gel (dichloromethane/methanol 90/10) to pro-
vide 0.78 g (34%) of (S)-tert-butyl-2-((1,3-dimethylimidazolidin-
2-ylideneamino)methyl)pyrrolidine-1-carboxylate hydrochloride
(3a) as a white, gummy foam.
1 Recent reviews: (a) D. Almasi, D. A. Alonso and C. Najera, Tetrahedron
Asymm., 2007, 18, 295; (b) S. Tsogoeva, Eur. J. Org. Chem., 2007,
1701.
2 Recent review: (a) S. Mukherjee, J. W. Yang, S. Hoffmann and B. List,
Chem Rev., 2007, 107, 5471.
3 (a) Recent reviews: G. Lelais, D. W. C. MacMillan, Enantioselective
Organocatalysis, 2007, p. 95. Publisher: Wiley-VCH Verlag GmbH
& Co. KGaA, Weinheim, Germany; (b) C. Palomo and A. Mielgo,
Angew. Chem. Int. Ed., 2006, 45, 7876; (c) B. List, Chem. Comm., 2006,
819.
4 N. Halland, P. S. Aburel and K. A. Jorgensen, Angew. Chem. Int. Ed.,
2003, 42, 661.
5 (a) A. Kawara and T. Taguchi, Tetrahedron Lett., 1994, 35, 8805; (b) K.
R. Knudsen, C. E. T. Mitchell and S. V. Ley, Chem. Comm., 2006,
66.
1H NMR (500 MHz, CDCl3): d 9.6 (s,1H, NH), 3.94-3.93
(br m, 1H, CHN), 3.75-3.72 (m, 1H, CHCH2N), 3.64 (s, 4H,
NCH2CH2N), 3.52-3.48 (m, 1H, CHCH2N), 3.37-3.32 (m, 2H,
CH2NCO), 3.28 (s, 6H, NCH3), 2.33-2.29 (m, 1H, CH2CH2),
2.11-2.09 (1H, m, CH2CH2), 1.93-1.83 (m, 2H, CH2CH2), 1.45
(s, 9H, C(CH3)3); 13C NMR (125.8 MHz, CDCl3): d 158.9
(NCO), 156.1 (N=CN), 80.2 (OC(CH3)3), 57.1 (CHN), 49.7
(CHCH2N, NCH2CH2N), 47.3 (NCH3), 46.1 (NCH3), 35.3
(CH2NC(O)), 29.5 (C(CH3)3), 28.4 (NCH2CH2(pyrrolidine)), 23.7
(NCH2 (pyrrolidine)). Visible peaks for isomeric salt: d 157.3,
81.09, 56.1, 53.6, 47.8, 45.6, 30.9; MS (APCI): m/z 297.2 ((M -
HI) + 1, 100); IR (neat): 2972, 1684, 1632, 1392, 1166, 1109
cm-1; HRMS (CI): m/z 296.2203 (296.2212 calc. for C15H28N4O2
(M - HI)).
To a stirred solution of the above hydrochloride (0.320 g,
0.96 mmol) in dry CH2Cl2 (3 mL) was added trifluoroacetic acid
(1.5 mL) at 0 ◦C. The solution was brought to room temperature
after 30 min., stirred for 3 h and concentrated under reduced
pressure. The residue was dissolved in ethyl acetate (5 mL) and
the solution was extracted with water (2 mL). The aqueous phase
was cooled (<5 ◦C), basified with NaOH pellets and the basic
solution was extracted with CH2Cl2 (3 ¥ 10 mL). The combined
organic layers were dried over Na2SO4 and concentrated under
reduced pressure to give 138 mg (73%) of 3 as a pale yellow
gum.
6 (a) S. Hanessian, Z. Shao and J. S. Warrier, Org. Lett., 2006, 8, 4787;
(b) S. Hanessian, S. Govindan and J. S. Warrier, Chirality, 2005, 17,
540; (c) S. Hanessian and V. Pham, Org. Lett., 2000, 2, 2975; (d) C.
E. T. Mitchell, S. E. Brenner, J. Garcia-Fortanet and S. V. Ley, Org.
Biomol. Chem., 2006, 4, 2039; (e) C. E. T. Mitchell, S. E. Brenner and
S. V. Ley, Chem. Comm., 2005, 5346.
7 (a) S. B. Tsogoeva, S. B. Jagtap and Z. A. Armedasova, Tet. Asymm.,
2006, 17, 989; (b) S. B. Tsogoeva and S. B. Jagtap, Synlett, 2004,
2624; (c) S. B. Tsogoeva, S. B. Jagtap, Z. A. Armedasova and V. N.
Kalikhevich, Eur. J. Org. Chem., 2004, 4014.
8 (a) A. Prieto, N. Halland and K. A. Jorgensen, Org. Lett., 2005, 7, 3897;
(b) N. Halland, R. G. Hazell and K. A. Jorgensen, J. Org. Chem., 2002,
67, 8331.
9 (a) J. Wang, H. Li, L. Zu, W. Jiang, H. Xie, W. Duan and W. Wang,
J. Am. Chem. Soc., 2006, 128, 12652; (b) M. Ostendorf, S. Van, der
Neut, F. P. J. T. Rutjes and H. Hiemstra, Eur. J. Org. Chem., 2000, 61,
3520; (c) T. Kumamoto, K. Ebine, M. Endo, Y. Araki, Y. Fushimi, I.
Miyamoto, T. Ishikawa, T. Isobe and K. Fukuda, Heterocycles, 2005,
66, 347.
10 Chiral guanidine catalysts in conjugate addition reactions: 1,3-
dicarbonyl/nitroalkene: (a) M. Terada, H. Ube and Y. Yaguchi, J.
Am. Chem. Soc., 2006, 128, 1454. Phosphite/nitroalkene:; (b) M.
Terada, T. Ikehara and H. Ube, J. Am. Chem. Soc., 2007, 129, 14112;
(c) X. Fu, Z. Jiang and C.-H. Tan, Chem. Commun., 2008, 5058.
Iminoacetate/acrylate: (d) D. Ma and D. K. Cheng, Tetrahedron:
Asymmetry, 1999, 10, 713; (e) A. Rayoda, N. Najima, T. Haga,
T. Kumamoto, W. Nakanishi, M. Kawahata, K. Yamaguchi and T.
Ishikawa, J. Org. Chem., 2008, 73, 133; (f) T. Ishikawa, Y. Araki, T.
Kumamoto, T. Isobe, H. Seki and K. Fukuda, Chem. Comm., 2001, 245.
Iminoacetate/methyl vinyl ketone: (g) D. Wannaporn and T. Ishikawa,
Mol. Diversity, 2005, 9, 321. Dithiomalonate/enone: (h) W. Ye, Z.
Jhiang, Y. Zhao, S. Li, Min Goh, D. Leow, Y.-T. Soh and C.-H. Tan,
Adv. Synth. Catal., 2007, 349, 2454. Malonate/enone: (i) T. Kumamoto,
K. Ebine, M. Endo, Y. Araki, Y. Fushimi, I. Miyamoto, T. Ishikawa, T.
Isobe and K. Fukuda, Heterocycles, 2005, 66, 347. Pyrrolidine/lactone:
(j) V. Alcazar, J. R. Morgan and J. de Mendoza, Tetrahedron Lett., 1995,
36, 3941; (k) A. Howard-Jones, P. J. Murphy and D. A. Thomas, J. Org.
Chem., 1999, 64, 1039; (l) K. Nagasawa, A. Georgieva, H. Takahashi
and T. Nakata, Tetrahedron, 2001, 57, 8959.
1H NMR (500 MHz, CDCl3): 3.96-3.92 (m, 1H, CHN), 3.84-
3.8 (dd, 1H, J = 9.2, 13, CHCH2N), 3.5-3.45 (m, 1H, CH2N),
3.4-3.37 (dd, 1H, J = 5.7, 13, CHCH2N), 3.24-3.14 (m, 3H,
CH2N, NCH2CH2N), 2.87 (s, 3H, CH3N), 2.82 (br s, 1H,
NH), 2.81-2.76 (m, 3H, NH), 2.45 (s, 3H, CH3N), 1.96-1.9 (m,
1H, CH2CH2), 1.82-1.74 (m, 2H, CH2CH2), 1.54-1.47 (m, 1H,
CH2CH2); 13C NMR (125.8 MHz, CDCl3): d 167.7 (NCN), 64.2
(CHN), 58.6 (CHCH2N), 51.3 (CH2N), 51.1 (NCH2CH2N), 49.4
(NCH2CH2N), 36.9 (NCH3), 36.7 (NCH3) 32.4 (CH2CH2), 26.1
11 This trend in enantioselection contrasts with that observed with other
catalyst systems, see references 6d, 7c.
12 For a review on guanidinium cation-anion binding, see: C. Schmuck,
Coord. Chem. Rev., 2006, 50, 3053.
This journal is
The Royal Society of Chemistry 2009
Org. Biomol. Chem., 2009, 7, 319–324 | 323
©