Table 3 Results of TPAP mediated Nef-type oxidation
Acknowledgements
R1
R2
Product
dea
Yield
We gratefully acknowledge GlaxoSmithKline (to djb), EPSRC
(to fah-j), Dr J. E. Davies for X-ray crystallography, EPSRC
National Mass Spectrometry Service Centre, Swansea and
Prof. S. V. Ley.
Entry
1
Me
Me
13
14
>98%
>98%
66%
50%
2b
References and notes
3
Et
15
98%
48%
1 (a) D. Enders, A. Haertwig, G. Raabe and J. Runsink, Angew.
Chem., Int. Ed., 1996, 35, 2388–2390; (b) D. Enders, A. Haertwig,
G. Raabe and J. Runsink, Eur. J. Org. Chem., 1998, 1771–1792;
(c) D. Enders, A. Haertwig and J. Runsink, Eur. J. Org. Chem., 1998,
1793–1802.
2 (a) N. J. Adderley, D. J. Buchanan, D. J. Dixon and D. I. Lainé,
Angew. Chem., Int. Ed., 2003, 42, 4241–4244; (b) D. J. Buchanan,
D. J. Dixon, M. S. Scott and D. I. Lainé, Tetrahedron: Asymmetry,
2004, 15, 195–197.
4
Et
16
98%
83%
a Measured by analysis of the 400, 500 or 600 MHz H nmr spectra
of the purified reaction product. b Reaction performed for 3 h at rt in
the presence of 2,6-di-tert-butyl-4-methylpyridine (1.0 eq).
1
3 For early studies into the oxy-Michael (racemic, unstereoselective)
see J. L. Duffy, J. A. Kurth and M. J. Kurth, Tetrahedron Lett.,
1993, 34, 1259–1260 and references cited therein.
4 (a) H. Sasai, N. Itoh, T. Suzuki and M. Shibasaki, Tetrahedron
Lett., 1993, 34, 855–858; (b) H. Sasai, N. Itoh, T. Suzuki, S. Arai
and M. Shibasaki, Tetrahedron Lett., 1993, 34, 2657–2660;
(c) R. Chinchilla, C. Najera and P. Sanchez-Agullo, Tetrahedron:
Asymmetry, 1994, 5, 1393–1402; (d) M. Shibasaki, H. Sasai and
T. Arai, Angew. Chem., Int. Ed., 1997, 36, 1236–1256; (e) H. Sasai,
T. Tokunaga, S. Watanabe, T. Suzuki, N. Itoh and M. Shibasaki,
J. Org. Chem., 1995, 60, 7388–7389; (f) B. M. Trost, V. S. C. Yeh,
H. Ito and N. Bremeyer, Org. Lett., 2002, 4, 2621–2623.
5 A. Kamimura and N. Ono, Tetrahedron Lett., 1989, 30, 731–734.
6 a,b-Disubstituted nitro olefins are readily prepared by the
condensation of nitroalkanes with aldehydes. See for example:
Y. Kawai, Y. Inaba and N. Tokitoh, Tetrahedron: Asymmetry,
2001, 12, 309–318.
7 (a) A. Nose and T. Kudo, Chem. Pharm. Bull., 1981, 29, 1159–1161;
(b) A. Nose and T. Kudo, Chem. Pharm. Bull., 1988, 36, 1529–1533;
(c) A. Nose and T. Kudo, Chem. Pharm. Bull., 1989, 37, 816–818;
(d) J. O. Osby and B. Ganem, Tetrahedron Lett., 1985, 26,
6413–6416.
8 P. Besse, H. Veschambre, M. Dickman and R. Chênevert, J. Org.
Chem., 1994, 59, 8288–8291.
Scheme 4 Reagents and conditions: (a) TPAP (xs), CH2Cl2, RT, o/n.
integrity of the b-stereocentre formed in the oxy-Michael
reaction (Scheme 4, Table 3).
This method worked well, albeit slowly, for the b-aryl and
b-heteroaryl oxy-Michael adducts, but interestingly no reaction
was observed when the b-alkyl adduct 8 was subjected to the
same reaction conditions.
In summary, the naked alkoxide of (S)-6-methyl delta
lactol adds efficiently and with excellent b-selectivity to a,b-
disubstituted nitro olefins. Diastereofacial protonation of the
generated nitronate anions with acetic acid allows moderate
control of the a-stereocentre (1:1→3:1 favouring the syn-
products). These materials can be reduced with nickel boride
to give the amino alcohol products, or oxidized via the Nef-type
reaction to give the protected a-hydroxy ketones in high dia-
stereoisomeric excess. The origins of stereocontrol at both the
a- and b-centres, as well as various applications of this work
will be reported in due course.
9 C. Agami, F. Couty, L. Hamon and O. Venier, Bull. Soc. Chim.
Fr., 1995, 132, 808–814.
10 The stereochemistry of 12 was predicted by analogy with that
of 10.
11 R. C. Larock, Comprehensive Organic Transformations; VCH
Publishers, Inc., 1989, pp. 603–604.
12 Y. Tokunaga, M. Ihara and K. Fukumoto, J. Chem. Soc., Perkin
Trans. 1, 1997, 207–209.
2 9 3 4
O r g . B i o m o l . C h e m . , 2 0 0 4 , 2 , 2 9 3 2 – 2 9 3 4