Page 5 of 7
ACS Catalysis
J.; Zajicova, M.; Pekareka, T. An Improved Synthesis of
Elvitegravir. J. Heterocycl. Chem. 2016, 53, 1738-1749.
Amino 1-Alcohols. J. Org. Chem. 1987, 52, 5079-5085. (b) Honig,
H.; Seuferwasserthal, P.; Fulop, F. Enzymatic Resolutions of
Cyclic Amino Alcohol Precursors. J. Chem. Soc., Perkin Trans. 1
1989, 2341-2345. (c) Fadnavis, N. W.; Sharfuddin, M.; Vadivel, S.
K. Resolution of Racemic 2-Amino-1-butanol with Immobilised
Penicillin G Acylase. Tetrahedron: Asymmetry 1999, 10, 4495-
4500. (d) Lundell, K.; Kanerva, L. T. Enantiomers of Ring-
Substituted 2-Amino-1-phenylethanols by Pseudomonas cepacia
Lipase. Tetrahedron: Asymmetry 1995, 6, 2281-2286. (e)
Lourenco, N. M. T.; Barreiros, S.; Afonso, C. A. M. Enzymatic
Resolution of Indinavir Precursor in Ionic Liquids with Reuse of
Biocatalyst and Media by Product Sublimation. Green Chem.
2007, 9, 734-736.
(11) (a) Malik, M. S.; Park, E. S.; Shin, J. S. ω-Transaminase-
Catalyzed Kinetic Resolution of Chiral Amines Using L-
Threonine as an Amino Acceptor Precursor. Green Chem. 2012,
14, 2137-2140. (b) Fuchs, C. S.; Simon, R. C.; Riethorst, W.;
Zepeck, F.; Kroutil, W. Synthesis of (R)- or (S)-Valinol Using ω-
Transaminases in Aqueous and Organic Media. Biorg. Med.
Chem. 2014, 22, 5558-5562. (c) Nobili, A.; Steffen-Munsberg, F.;
Kohls, H.; Trentin, I.; Schulzke, C.; Höhne, M.; Bornscheuer, U.
T. Engineering the Active Site of the Amine Transaminase from
Vibrio fluvialis for the Asymmetric Synthesis of Aryl-Alkyl
Amines and Amino Alcohols. ChemCatChem 2015, 7, 757-760. (d)
Zhang, J. D.; Wu, H. L.; Meng, T.; Zhang, C. F.; Fan, X. J.; Chang,
H. H.; Wei, W. L. A High-Throughput Microtiter Plate Assay for
the Discovery of Active and Enantioselective Amino Alcohol-
Specific Transaminases. Anal. Biochem. 2017, 518, 94-101. (e)
Zhao, J. W.; Wu, H. L.; Zhang, J. D.; Gao, W. C.; Fan, X. J.; Chang,
H. H.; Wei, W. L.; Xu, J. H. One Pot Simultaneous Preparation of
Both Enantiomer of β-Amino Alcohol and Vicinal Diol Via
Cascade Biocatalysis. Biotechnol. Lett. 2018, 40, 349-358. (f)
Smithies, K.; Smith, M. E. B.; Kaulmann, U.; Galman, J. L.; Ward,
J. M.; Hailes, H. C. Stereoselectivity of an ω-Transaminase-
Mediated Amination of 1,3-Dihydroxy-1-phenylpropane-2-one.
Tetrahedron: Asymmetry 2009, 20, 570-574. (g) Rios-Solis, L.;
Bayir, N.; Halim, M.; Du, C.; Ward, J. M.; Baganz, F.; Lye, G. J.
Non-Linear Kinetic Modelling of Reversible Bioconversions:
Application to the Transaminase Catalyzed Synthesis of Chiral
Amino-Alcohols. Biochem. Eng. J. 2013, 73, 38-48. (h) Kaulmann,
U.; Smithies, K.; Smith, M. E. B.; Hailes, H. C.; Ward, J. M.
Substrate Spectrum of ω-Transaminase from Chromobacterium
violaceum DSM30191 and Its Potential for Biocatalysis. Enzyme
Microb. Technol. 2007, 41, 628-637.
(12) (a) Rehn, G.; Adlercreutz, P.; Grey, C. Supported Liquid
Membrane as a Novel Tool for Driving the Equilibrium of ω-
Transaminase Catalyzed Asymmetric Synthesis. J. Biotechnol.
2014, 179, 50-55. (b) Hülsewede, D.; Tänzler, M.; Süss, P.;
Mildner, A.; Menyes, U.; von Langermann, J. Development of an
in situ-Product Crystallization (ISPC)-Concept to Shift the
Reaction Equilibria of Selected Amine Transaminase-Catalyzed
Reactions. Eur. J. Org. Chem. 2018, 2018, 2130-2133.
(13) Yun, H.; Kim, J.; Kinnera, K.; Kim, B. G. Synthesis of
Enantiomerically Pure trans-(1R,2R)- and cis-(1S,2R)-1-Amino-2-
Indanol by Lipase and ω-Transaminase. Biotechnol. Bioeng.
2006, 93, 391-395.
(14) Wu, S. K.; Zhou, Y.; Wang, T. W.; Too, H. P.; Wang, D. I.
C.; Li, Z. Highly Regio- and Enantioselective Multiple Oxy- and
Amino-Functionalizations of Alkenes by Modular Cascade
Biocatalysis. Nat. Commun. 2016, 7, 11917.
(15) (a) Ingram, C. U.; Bommer, M.; Smith, M. E. B.; Dalby, P.
A.; Ward, J. M.; Hailes, H. C.; Lye, G. J. One-Pot Synthesis of
Amino-Alcohols Using a De-Novo Transketolase and β-Alanine:
Pyruvate Transaminase Pathway in Escherichia coli. Biotechnol.
Bioeng. 2007, 96, 559-569. (b) Smith, M. E. B.; Chen, B. H.;
Hibbert, E. G.; Kaulmann, U.; Smithies, K.; Galman, J. L.; Baganz,
F.; Dalby, P. A.; Hailes, H. C.; Lye, G. J.; Ward, J. M.; Woodley, J.
1
2
3
4
5
6
7
8
(3) Ager, D. J.; Prakash, I.; Schaad, D. R. 1,2-Amino Alcohols
and Their Heterocyclic Derivatives as Chiral Auxiliaries in
Asymmetric Synthesis. Chem. Rev. 1996, 96, 835-875.
(4) (a) Reetz, M. T.; Drewes, M. W.; Schmitz, A.
Stereoselective Synthesis of β-Amino Alcohols from Optically
Active α-Amino Acids. Angew. Chem. Int. Ed. Engl. 1987, 26, 1141-
1143. (b) Abiko, A.; Masamune, S. An Improved, Convenient
Procedure for Reduction of Amino Acids to Aminoalcohols: Use
of NaBH4-H2SO4. Tetrahedron Lett. 1992, 33, 5517-5518.
(5) Fan, G. Q.; Liu, Y. H. Titanium-Mediated Cross-Coupling
Reactions of Imines with Ketones or Aldehydes: An Efficient
Route for the Synthesis of 1,2-Amino Alcohols. Tetrahedron Lett.
2012, 53, 5084-5087.
(6) (a) Harris, C. E.; Fisher, G. B.; Beardsley, D.; Lee, L.;
Goralski, C. T.; Nicholson, L. W.; Singaram, B. Boranes in
Synthesis .6. A New Synthesis of β-Amino Alcohols from
Epoxides. Use of Lithium Amides and Aminoborane Catalysts to
Synthesize β-Amino Alcohols from Terminal and Internal
Epoxides in High Yield. J. Org. Chem. 1994, 59, 7746-7751. (b)
Posner, G. H.; Rogers, D. Z. Organic Reactions at Alumina
Surfaces. Mild and Selective Opening of Epoxides by Alcohols,
Thiols, Benzeneselenol, Amines, and Acetic Acid. J. Am. Chem.
Soc. 1977, 99, 8208-8214. (c) Posner, G. H.; Rogers, D. Z. Organic
Reactions at Alumina Surfaces. Mild and Selective Opening of
Arene and Related Oxides by Weak Oxygen and Nitrogen
Nucleophiles. J. Am. Chem. Soc. 1977, 99, 8214-8218.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(7) (a) Li, G. G.; Chang, H. T.; Sharpless, K. B. Catalytic
Asymmetric Aminohydroxylation (AA) of Olefins. Angew. Chem.
Int. Ed. Engl. 1996, 35, 451-454. (b) Nilov, D.; Reiser, O. The
Sharpless
Limitation. Adv. Synth. Catal. 2002, 344, 1169-1173. (c) Bodkin, J.
A.; McLeod, M. D. The Sharpless Asymmetric
Asymmetric
Aminohydroxylation–Scope
and
Aminohydroxylation. J. Chem. Soc., Perkin Trans. 1 2002, 2733-
2746.
(8) (a) Sakurai, R.; Sakai, K. Resolution of Racemic cis-1-
Amino-2-indanol by Diastereomeric Salt Formation with (S)-2-
Phenylpropionic Acid. Tetrahedron: Asymmetry 2003, 14, 411-413.
(b) Larrow, J. F.; Schaus, S. E.; Jacobsen, E. N. Kinetic Resolution
of Terminal Epoxides via Highly Regioselective and
Enantioselective Ring Opening with TMSN3. An Efficient,
Catalytic Route to 1,2-Amino Alcohols. J. Am. Chem. Soc. 1996,
118, 7420-7421. (c) Kawabata, T.; Yamamoto, K.; Momose, Y.;
Yoshida, H.; Nagaoka, Y.; Fuji, K. Kinetic Resolution of Amino
Alcohol Derivatives with a Chiral Nucleophilic Catalyst: Access
to Enantiopure Cyclic cis-Amino Alcohols. Chem. Commun.
2001, 2700-2701.
(9) (a) Huisman, G. W.; Collier, S. J. On the Development of
New Biocatalytic Processes for Practical Pharmaceutical
Synthesis. Curr. Opin. Chem. Biol. 2013, 17, 284-292. (b) Zheng, G.
W.; Xu, J. H. New Opportunities for Biocatalysis: Driving the
Synthesis of Chiral Chemicals. Curr. Opin. Biotechnol. 2011, 22,
784-792. (c) Hollmann, F.; Arends, I. W. C. E.; Holtmann, D.
Enzymatic Reductions for the Chemist. Green Chem. 2011, 13,
2285-2314. (d) Höhne, M.; Bornscheuer, U. T. Biocatalytic Routes
to Optically Active Amines. ChemCatChem 2009, 1, 42-51. (e)
Kroutil, W.; Mang, H.; Edegger, K.; Faber, K. Recent Advances in
the Biocatalytic Reduction of Ketones and Oxidation of sec-
Alcohols. Curr. Opin. Chem. Biol. 2004, 8, 120-126. (f) Reetz, M.
T. Biocatalysis in Organic Chemistry and Biotechnology: Past,
Present, and Future. J. Am. Chem. Soc. 2013, 135, 12480-12496. (g)
Schrittwieser, J. H.; Velikogne, S.; Hall, M.; Kroutil, W. Artificial
Biocatalytic Linear Cascades for Preparation of Organic
Molecules. Chem. Rev. 2017, 118, 270-348.
(10) (a) Francalanci, F.; Cesti, P.; Cabri, W.; Bianchi, D.;
Martinengo, T.; Foa, M. Lipase-Catalyzed Resolution of Chiral 2-
ACS Paragon Plus Environment