Metal Complexes of 3,5-Diethynylpyridine
Organometallics, Vol. 23, No. 24, 2004 5709
Table 1. Crystal Data for Complex 6
126.6, 121.0, 99.2 (CtC), 59.0 (CH2, Et2O), 58.6 (CMe3), 29.6
(CMe3), 8.9 (Me, Et2O).
formula
fw
cryst size (mm)
cryst syst
space group
a (Å)
C51H45Au2NP2
4: yield 191 mg, 69%. Mp: 293 °C dec. Anal. Calcd for
1127.75
0.34 × 0.28 × 0.06
monoclinic
P21/c
C15H21Au2NP2: C, 26.84; H, 3.15; N, 2.09. Found: C, 26.88;
1
H, 3.13; N, 2.08. IR (cm-1): ν(CtC) 2098 (w). H NMR (200
4
MHz, CDCl3): δ 8.47 (d, 2 H, py, JHH ) 2 Hz), 7.73 (t, 1 H,
py, 4JHH ) 2 Hz), 1.55 (d, 18 H, PMe3, 2JHP ) 10 Hz). 31P{1H}
NMR (81 MHz, CDCl3): δ 1.36 (s).13C{1H} NMR (50 MHz,
CDCl3): δ 150.5 (py), 141.5 (py), 121.2 (d, CCAu, 3JCP ) 5 Hz),
9.9851(6)
23.4212(19)
19.0934(15)
90
91.270(6)
90
4464.1(6)
4
1.678
b (Å)
c (Å)
R (deg)
â (deg)
γ (deg)
V (Å3)
2
1
100.7 (d, CAu, JCP ) 30 Hz), 15.7 (d, PMe3, JCP ) 35 Hz).
5‚H2O: yield 161 mg, 67%. Mp: 115 °C. Anal. Calcd for
C45H35NAu2OP2: C, 50.91; H, 3.32; N, 1.32. Found: C, 50.79;
H, 3.39; N, 1.27. IR (cm-1): ν(CtC) 2112 (s). 1H NMR (400
Z
F
λ (Å)
calcd (Mg m-3
)
4
MHz, CDCl3): δ 8.55 (d, 2 H, py, JHH ) 2 Hz), 7.83 (t, 1 H,
py, 4JHH ) 2 Hz), 7.57-7.45 (m, 30 H, PPh3), 1.66 (s, 2 H, H2O).
31P{1H} NMR (162 MHz, CDCl3): δ 42.61 (s). 13C{1H} NMR
(50 MHz, CDCl3): δ 150.7 (py), 141.5 (py), 137.5 (py), 134.3
0.710 73
173(2)
T (K)
F(000)
2184
µ(Mo KR) (mm-1
θ range (deg)
abs cor
)
6.671
2
4
(d, o-CH, PPh3, JCP ) 14 Hz), 131.6 (d, p-CH, PPh3, JCP ) 3
3.05-25.00
ψ scans
8437
Hz,), 129.6 (d, i-C, PPh3, 1JCP ) 56 Hz), 129.2 (d, m-CH, PPh3,
3JCP ) 11 Hz), 121.2 (d, CCAu, JCP ) 3 Hz), 100.2 (d, CAu,
3
no. of rflns coll
2JCP ) 27 Hz).
no. of indep rflns
Rint
7835
0.0407
6: yield 488 mg, 82%. Mp: 206 °C dec. Anal. Calcd for
transmissn
0.997 05/0.449 49
7835/18/505
0.0403
C51H45Au2NP2: C, 54.31; H, 4.02; N, 1.24. Found: C, 54.14;
1
no. of data/restraints/params
R1 (I > 2σ(I))a
wR2 (all rflns)b
H, 4.30; N, 1.33. IR (cm-1): ν(CtC) 2112 (w). H NMR (200
4
MHz, CDCl3): δ 8.55 (d, 2 H, py, JHH ) 2 Hz), 7.82 (t, 1 H,
0.0668
py, 4JHH ) 2 Hz), 7.47-7.37 (m, 12 H, PTo3), 7.25-7.21 (m, 12
H, PTo3), 2.39 (s, 18 H, Me). 31P{1H} NMR (81 MHz, CDCl3):
δ 41.22 (s). 13C{1H} NMR (50 MHz, CDCl3): δ 150.7, 141.9 (d,
a R1 ) ∑||Fo| - |Fc||/∑|Fo| for reflections with I > 2σ(I). b wR2
2
) [∑[w(Fo2 - Fc )2]/∑[w(Fo2)2]0.5 for all reflections; w-1 ) σ2(F2) +
2
(aP)2 + bP, where P ) (2Fc + Fo2)/3 and a and b are constants
4
2
p-CH, PTo3, JCP ) 2 Hz), 141.5, 134.1 (d, o-CH, PTo3, JCP
)
set by the program.
3
14 Hz), 129.8 (d, m-CH, PTo3, JCP ) 12 Hz), 126.6 (d, i-C,
1
5
PTo3, JCP ) 58 Hz), 121.2, 21.5 (d, Me, JCP ) 1 Hz).
7‚H2O: yield 226 mg, 49%. Mp: 131 °C dec. Anal. Calcd for
C39H37Au2NOP2: C, 47.24; H, 3.76; N, 1.41. Found: C, 47.05;
vacuum, and the residue was stirred with CHCl3 (20 mL). The
resulting suspension was filtered through Celite, the solution
concentrated to dryness, and the solid residue stirred with
n-pentane (25 mL). The suspension was filtered and the solid
dried under reduced pressure (ca. 1 mbar) for 1 h to give a
microcrystalline pale yellow powder. Yield: 365 mg, 90%.
Mp: 142 °C dec. Anal. Calcd for C88H75Au2ClF3NO3P4PtS: C,
52.02; H, 3.72; N, 0.69. Found: C, 52.08; H, 3.78; N, 0.89. IR
(cm-1): ν(CtC) 2114 (s); ν(PtCl), 318(s). ΛM (Ω-1 cm2 mol-1):
H, 3.41; N, 1.52. IR (cm-1): ν(CtC) 2106 (w). H NMR (400
1
4
MHz, CDCl3): δ 8.52 (d, 2 H, py, JHH ) 2 Hz), 7.79 (m, 1 H,
py), 7.68-7.44 (m, 20 H, Ph), 2.37 (m, 4 H, CH2), 1.66 (s, 2 H,
H2O), 1.59 (m, 4 H, CH2), 1.43 (m, 4 H, CH2). 31P{1H} NMR
(162 MHz, CDCl3): δ 37.35 (s). 13C{1H} NMR (75 MHz,
CDCl3): δ 150.5, 141.5, 133.3 (d, m-CH, Ph, 3JCP ) 8 Hz), 131.6
(m, p-CH, Ph), 130.3 (d, i-C, Ph, 1JCP ) 53 Hz), 129.2 (d, o-CH,
1
2
146. H NMR (300 MHz, CDCl3): δ 8.17 (m, 2 H, py), 7.48-
Ph, JCP ) 15 Hz), 121.2 (s, CCAu), 100.1 (s, CAu), 30.3 (d,
7.14 (m, 55 H, PTo3 + PPh3 + py), 2.42 (s, 18 H, Me). 31P{1H}
NMR (121 MHz, CDCl3): δ 40.22 (s, AuPTo3), 16.67 (d, PtPPh3,
CH2, 2JCP ) 15 Hz), 27.8 (d, CH2, 1JCP ) 34 Hz), 25.3 (d, CH2,
3JCP ) 3 Hz). MS-FAB+ (m/z, %): 974 (M+, 6%), 651 (Audpph+,
36%).
2
1
1JPPt ) 3655 Hz, JPP ) 18 Hz), 4.74 (d, PtPPh3, JPPt ) 3240
Hz, JPP ) 18 Hz). MS-FAB+ (m/z, %): 1881 (M+, 26%).
2
Synthesis of [(AuPTo3){Py(CtCAuPTo3)2}]TfO (8). A
mixture of 6 (213 mg, 0.19 mmol), [AuClPTo3] (107 mg, 0.20
mmol), and TlTfO (71 mg, 0.20 mmol) in dry THF (20 mL)
was stirred under a nitrogen atmosphere for 0.5 h and then
concentrated to dryness under reduced pressure. The residue
was stirred with CHCl3 (30 mL), and the suspension was
filtered through Celite. The solution was concentrated to
dryness, the residue stirred with n-pentane (2 × 20 mL), the
suspension filtered, and the solid air-dried to give 8 as a
microcrystalline bright yellow powder. Yield: 242 mg, 72%.
Mp: 130 °C. Anal. Calcd for C73H66Au3F3NO3P3S: C, 49.31;
H, 3.74; N, 0.79. Found: C, 49.53; H, 3.91; N, 0.66. IR (cm-1):
ν(CtC) 2114 (w). ΛM (Ω-1 cm2 mol-1): 105. 1H NMR (300 MHz,
X-ray Structure Determination for Complex 6. The
crystals were mounted in inert oil on a glass fiber and
transferred to the diffractometer (Siemens P4 with LT2 low-
temperature attachment). Crystal data and refinement details
are presented in Table 1. The unit cell parameters were
determined from a least-squares fit of 88 accurately centered
reflections (14.1° < 2θ < 25.8°). The structure was solved by
the heavy-atom method and refined anisotropically on F2
(program SHELX-97, G. M. Sheldrick. University of Go¨ttingen,
Go¨ttingen, Germany). The largest residual peak of 1.62 e was
1.13 Å from Au2. Hydrogen atoms were included using a riding
model.
4
CDCl3): δ 8.49 (br, 2 H, py), 7.84 (t, 1 H, py, JHH ) 1.8 Hz),
7.41-7.22 (m, 36 H, Ar, PTo3), 2.44 (s, 9 H, Me), 2.39 (s, 18 H,
Me). 31P{1H} NMR (162 MHz, CDCl3): δ 43.68 (s, CAuPTo3),
36.85 (br s, NAuPTo3). 13C{1H}-APT NMR (100 MHz, CDCl3):
δ 150.5, 143.3 (p-C, PTo3), 142.3 (p-C, PTo3), 133.9 (d, o-CH,
Results and Discussion
Synthesis. The reaction of 3,5-diethynylpyridine
with PPN[Au(acac)2] to give the anionic complex
PPN[Au{CtC(Py)CtCH}2] (1), in which gold coordi-
nates to two monoanionic HCtC(Py)CtC- (Py ) pyri-
dine-3,5-diyl) ligands, requires the use of an excess of
the dialkyne over the stoichiometric 2:1 molar ratio
(Scheme 1) in order to prevent the formation of insoluble
oligomers of the type (PPN)n[Au{(CtC)2Py}]n. The
complex [Au2{(CtC)2Py}]n (2) was obtained by reacting
3,5-diethynylpyridine with [AuCl(SMe2)] and NEt3
2
PTo3, JCP ) 14 Hz), 133.7 (m, o-CH, NAuPTo3), 130.5 (m,
m-CH, NAuPTo3), 129.9 (d, m-CH, PTo3, 3JCP ) 12 Hz,), 125.7
1
(d, i-C, PTo3, JCP ) 61 Hz), 124.2 (m, i-C, NAuPTo3), 121.5,
21.5 (Me, PTo3), 21.4 (Me, PTo3). MS-FAB+ (m/z, %): 1628 (M+,
27%).
Synthesis of [{cis-PtCl(PPh3)2}{Py(CtCAuPTo3)2}]TfO
(9). A mixture of 6 (230 mg, 0.2 mmol), cis-[PtCl2(PPh3)2] (161
mg, 0.2 mmol), and TlTfO (72 mg, 0.2 mmol) in acetone (25
mL) was stirred for 1.25 h. The solvent was removed under