C O M M U N I C A T I O N S
Scheme 4. Suzuki-Miyaura Merger of the Key Fragments, Macroglycosidation, and Completion of the Total Synthesis of Kendomycin (1)a
a Reagents and conditions: (a) 4% PdCl2(dppf), 3 M aq K3PO4, Et2O-THF-DMF, 86%; (b) Dibal-H, toluene, then Ac2O, pyridine, 79%; (c) TBAF,
THF, 91%; (d) SnCl4, 4 Å MS, CHCl3, 40-70%; (e) (i) MeONa/MeOH, 87%, (ii) TESOTf, Et3N, DCM, 98%; (f) IBX, DMF, 62% (g) aq HF, CH3CN, 50%.
Supporting Information Available: Experimental details and
spectral data for all new compounds. This material is available free of
followed by iodination of the exposed hydroxyl group furnished
the desired alkyl iodide 20.
With the procurement of the two fragments, the feasibility of
their union through C14-C15 bond formation was probed (Scheme
4). Under the Pd-catalyzed conditions,16 boranate 6, which was
prepared from 20 by lithiation and transmetalation (t-BuLi, ether,
then B-OMe-9-BBN), participated well in the cross-coupling
reaction with iodide 5 to provide alkene 21 in excellent yield. To
this intermediate containing all of the carbon atoms of kendomycin
was imparted a glycosyl donor function by converting it into
anomeric acetate 22, thus setting the stage for the macro aryl
C-glycosidation. Our initial attempts to cyclize 22 under a variety
of Friedel-Crafts conditions were unsuccessful, mainly leading to
hydrolysis of the anomeric acetate.17 In contrast, the reaction
employing phenol 23 as the substrate occurred smoothly to afford
the desired macrocycle 25 as a single stereoisomer in 40-70%
yield. As a nonpolar product was produced rapidly at -5 °C, which
turned into 25 at room temperature over 12 h, this reaction appeared
to proceed through facile formation of O-glycoside 24 and
subsequent rearrangement to C-glycoside 25.18 After exchange of
the C7 protecting groups, oxidative fashioning of the aryl core was
achieved by careful treatment of 26 with IBX, which formed the
unstable diketone 30.19 Monitoring this reaction by 1H NMR
revealed the intermediacy of mixed ketal 28, which underwent slow
hydrolysis to 29 and eventually to 30. The removal of the TES
group and hydration of the ortho-quinone by the action of aqueous
HF finally produced kendomycin (1). Synthetic kendomycin
exhibited physical and spectroscopic characteristics (Rf, mp, [R]D,
References
(1) (a) Funahashi, Y.; Kawamura, N.; Ishimaru, T. JP Patent 08231551
[A296090], 1996. (b) Su, M. H.; Hosken, M. I.; Hotovec, B. J.; Johnston,
T. L. US Patent 5728727 [A980317], 1998.
(2) (a) Bode, H. B.; Zeeck, A. J. Chem. Soc., Perkin Trans. 1 2000, 323. (b)
Bode, H. B.; Zeeck, A. J. Chem. Soc., Perkin Trans. 1 2000, 2665.
(3) Funayama, S.; Cordell, G. A. In Studies in Natural Products Chemistry;
Atta-ur-Rahman, Ed.; Elsevier: New York, 2000; Vol. 23, pp 51-106.
(4) (a) Martin, H. J.; Drescher, M.; Ka¨hlig, H.; Schneider, S.; Mulzer, J.
Angew. Chem., Int. Ed. 2001, 40, 3186. (b) Marques, M. M. B.; Pichlmair,
S.; Martin, H. J.; Mulzer, J. Synthesis 2002, 2766. (c) Pichlmair, S.;
Marques, M. M. B.; Green, M. P.; Martin, H. J.; Mulzer, J. Org. Lett.
2003, 5, 4657. (d) Mulzer, J.; Pichlmair, S.; Green, M. P.; Marques, M.
M. B.; Martin, H. J. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 11980.
(5) Sengoku, T.; Arimoto, H.; Uemura, D. Chem. Commun. 2004, 1220.
(6) For reviews, see: (a) Jaramillo, C.; Knapp, S. Synthesis 1994, 1. (b)
Postema, M. H. D. C-Glycoside Synthesis; CRC: Boca Raton, FL, 1995.
(7) (a) Myers, A. G.; Yang, B. H.; Chen, H.; Gleason, J. L. J. Am. Chem.
Soc. 1994, 116, 9361. (b) Myers, A. G.; Yang, B. H.; Chen, H.; McKinstry,
L.; Kopecky, D. J.; Gleason, J. L. J. Am. Chem. Soc. 1997, 119, 6496.
(8) Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 13, 3769.
(9) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155.
(10) (a) Evans, D. A.; Clark, J. S.; Metternich, R.; Novack, V. J.; Sheppard,
G. S. J. Am. Chem. Soc. 1990, 112, 866. (b) Evans, D. A.; Cee, V. J.;
Smith, T. E.; Fitch, D. M.; Cho, P. S. Angew. Chem., Int. Ed. 2000, 39,
2533. (c) Evans, D. A.; Fitch, D. M.; Smith, T. E.; Cee, V. J. J. Am.
Chem. Soc. 2000, 122, 10033. (d) Ref 4b,d.
(11) Semmelhack, M. F.; Hooley, R. J. Tetrahedron Lett. 2003, 44, 5737.
(12) Hercouet, A.; Lecorre, M. Tetrahedron Lett. 1979, 20, 2145.
(13) Siddiqi, S. A.; Heckrodt, T. J. Z. Naturforsch. B 2003, 58, 328.
(14) Hercouet, A.; Lecorre, M. Tetrahedron 1981, 37, 2867.
1
IR, H, 13C NMR, and HRMS) identical to those reported for the
(15) See Supporting Information for the synthesis acid 17. Vong, B. G.;
Abraham, S.; Xiang, A. X.; Theodorakis, E. A. Org. Lett. 2003, 5, 1617.
natural product.
(16) (a) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457. (b) Marshall, J.
A.; Johns, B. A. J. Org. Chem. 1998, 63, 7885.
(17) For a rare example of macrocyclization via a Friedel-Crafts acylation
reaction, see: (a) Chen, M.; Guzei, I.; Rheingold, A. L.; Gibson, H. W.
Macromolecules 1997, 30, 2516. For a macro-O-glycosidation to prepare
cyclodextrins, see: (b) Stoddart, J. F.; Nepogodiev, S. A.; Gattuso, G.
Chem. ReV. 1998, 98, 1919.
In summary, the first total synthesis of kendomycin has been
achieved. Notable features of the synthesis are high levels of
convergence and stereocontrol in the assembly of key subunits,
efficient establishment of the structural core by a macroglycosi-
dation, and a novel oxidative hydration strategy to construct the
ansa chromophore.
(18) Matsumoto, T.; Katsuki, M.; Suzuki, K. Tetrahedron Lett. 1988, 29, 6935.
(19) (a) Magdziak, D.; Rodriguez, A. A.; Van De Water, R. W.; Pettus, T. R.
R. Org. Lett. 2002, 4, 285. (b) Ozanne, A.; Pouyse´gu, L.; Depernet, D.;
Franc¸ois, B.; Quideau, S. Org. Lett. 2003, 5, 2903.
Acknowledgment. The authors gratefully acknowledge Prince-
ton University for startup funding. Y.Y. thanks FMC corporation
for a graduate fellowship.
JA0447154
9
J. AM. CHEM. SOC. VOL. 126, NO. 45, 2004 14721