5 A. S. Borovik, S. G. Bott and A. R. Barron, Angew. Chem. Int. Ed.,
2000, 39, 4117; A. Borovik, S. G. Bott and A. R. Barron, J. Am.
Chem. Soc., 2001, 123, 11219; A. Borovik and A. R. Barron, J.
Am. Chem. Soc., 2002, 124, 3743; C. S. Branch and A. R. Barron,
J. Am. Chem. Soc., 2002, 124, 14156.
6.6 Hz, NCCH], 7.49 (2H, s, CH), 7.20 (2H, m, o-CH), 6.84
(2H, m, m-CH), 6.77 (1H, m, p-CH), 0.94 [18H, s, C(CH3)3].
Crystallographic studies
6 M. B. Power, J. R. Nash, M. D. Healy and A. R. Barron, Organo-
metallics, 1992, 11, 1830; L. H. van Poppel, S. G. Bott and A. R.
Barron, J. Am. Chem. Soc., 2003, 125, 11006.
7 M. D. Healy, J. W. Ziller and A. R. Barron, J. Am. Chem. Soc.,
1990, 112, 2949.
8 L. Carlucci, G. Ciani, A. Gramaccioli, D. M. Proserpio and
S. Rizzato, CrystEngComm, 2000, 29, 1.
9 M. Grosche, E. Herdtweck, F. Peters and M. Wagner, Organo-
metallics, 1999, 18, 4669.
10 K. M. Nykerk and D. P. Eyman, Inorg. Chem., 1967, 6, 1461;
G. H. Robinson, H. Zhang and J. L. Atwood, J. Organomet.
Chem., 1987, 331, 153; D. W. Goebel, J. L. Hencher and J. P. Oliver,
Organometallics, 1983, 2, 746; A. Almennigen, G. Gundersen,
T. Haugen and A. Haaland, Acta Chem. Scand., 1972, 26, 3928;
J. L. Atwood, S. K. Seale and D. H. Roberts, J. Organomet. Chem.,
1973, 51, 105; K. Lindstrom and F. Osterberg, Can. J. Chem.,
1980, 58, 815; M. Nethaji, V. Pattabhi and G. R. Desiraju, Acta
Crystallogr., Sect. C, 1988, 44, 275; R. Velavan, P. Sureshkumar,
K. Sivakumar and S. Natarajan, Acta Crystallogr., Sect. C, 1995,
51, 1131; H. Krupitsky, Z. Stein and I. Goldberg, J. Inclusion
Phenom., 1995, 20, 211; I. Goldberg, H. Krupitsky, Z. Stein,
Y. Hsiou and C. E. Strouse, Supramol. Chem., 1994, 4, 203;
L. H. van Poppel, S. G. Bott and A. R. Barron, J. Chem. Soc., Dalton
Trans., 2002, 3327.
Single crystal diffraction data for compounds 1–4, 6a and
7a were collected at ambient temperature on a Bruker CCD
SMART system, equipped with graphite-monochromated
Mo-Ka radiation (k = 0.71073 Å) and corrected for Lorentz
and polarization effects. The structures were solved using the
direct methods program XS22 and difference Fourier maps
and refined by using full-matrix least squares methods. All
non-hydrogen atoms were refined with anisotropic thermal
parameters. Hydrogen atoms were introduced in calculated
positions and allowed to ride on the attached carbon atoms
[d(C–H) = 0.95 Å]. Refinement of positional and anisotropic
thermal parameters led to convergence (see Table 3).
CCDC reference numbers 244715–244720.
lographic data in CIF or other electronic format.
Computational methods
Density functional calculations on AlMe3(py) and Al(tBu)2-
(OPh)(py) were carried out using a Gaussian-98 suite.23 Com-
plete geometry optimizations were performed at B3LYP24
level using the 6–31G** basis set for C and H and Stuttgart
RLC ECP basis set for Al. Vibrational frequencies were then
evaluated to verify the existence of the true potential minimum
and to determine zero-point energies. Molecular mechanics
calculations were performed using Spartan (02 Windows)
running on a PC. The final structures are optimized using
molecular mechanics method MMFF94.
11 P. J. Wheatley, Acta Cryst., 1957, 10, 182; G. de With, S. Harkema
and D. Feil, Acta Crystallogr., Sect. B, 1976, 32, 3178.
12 N. M. Boag, K. M. Coward, A. C. Jones, M. E. Pemble and J. R.
Thompson, Acta Crystallogr., Sect. C, 1999, 55, 672.
13 S. Ide, N. Karacan and Y. Tufan, Acta Crystallogr., Sect. C, 1995,
51, 2304.
14 J. Vansant, G. Smets, J. P. Declercq, G. Germain and M. van
Meerssche, J. Org. Chem., 1980, 45, 1557.
15 T. L. Hennigar, D. C. MacQuarrie, P. Losier, R. D. Rogers and
M. J. Zaworotko, Angew. Chem., Int. Ed. Engl., 1997, 36, 972.
16 Z.-Y. Fu, S.-M. Hu, J.-C. Dai, J.-J. Jhang and X.-T. Wu, Eur. J.
Inorg. Chem., 2003, 2670.
Acknowledgements
Financial support for this work is provided by the ACS-PRF
and NSF (CHE-0243575). The Bruker CCD Smart System
Diffractometer of the Texas Center for Crystallography at Rice
University was funded by the Robert A. Welch Foundation and
the Bruker Avance 200 NMR spectrometer was purchased with
funds from ONR Grant N00014-96-1-1146.
17 P. S. Mukherjee, S. Konar, E. Zangrando, T. Mallah, J. Ribas
and M. R. Chudhuri, Inorg. Chem., 2003, 42, 2695; L. Carlucci,
G. Ciani, D. M. Proserpio and S. Rizzato, J. Chem. Soc., Dalton
Trans., 2000, 3821.
18 L. Carlucci, G. Ciani, D. M. Proserpio and S. Rizzato, CrystEng-
Comm., 2003, 5, 190.
19 A. R. Barron, J. Chem. Soc., Dalton Trans., 1988, 3047.
20 J. A. Francis, C. N. McMahon, S. G. Bott and A. R. Barron,
Organometallics, 1999, 18, 4399.
21 C. L. Aitken and A. R. Barron, J. Chem. Crystallogr., 1996, 26, 293.
22 G. M. Sheldrick, SHELXTL. Bruker AXS, Inc. Madison, WI, 1997.
23 Gaussian 98, Revision A.5: M. J. Frisch, G. W. Trucks, H. B.
Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G.
Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant,
S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C.
Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi,
B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski,
G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski,
J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,
I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith,
M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez,
M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong,
J. L. Andres, M. Head-Gordon, E. S. Replogle, and J. A. Pople,
Gaussian, Inc., Pittsburgh PA, 1998.
References
1 M. B. Power, J. R. Nash, M. D. Healy and A. R. Barron, Organo-
metallics, 1992, 11, 1830; M. B. Power, S. G. Bott, J. L. Atwood
and A. R. Barron, J. Am. Chem. Soc., 1990, 112, 3446; M. B. Power,
S. G. Bott, D. L. Clark, J. L. Atwood and A. R. Barron, Organo-
metallics, 1990, 9, 3086.
2 C. N. McMahon, S. G. Bott and A. R. Barron, J. Chem. Soc.,
Dalton Trans., 1997, 3129.
3 A. J. Stern and J. J. Swenton, J. Chem. Soc., Chem. Commun., 1988,
4413.
4 For example: T. Ooi, M. Takahashi, M. Yamada, E. Tayama,
K. Omoto and K. Maruoka, J. Am. Chem. Soc., 2004, 126, 1150;
D. J. H. Emslie, W. E. Piers and M. Parvez, Angew. Chem., Int.
Ed., 2003, 42, 1252; N. Morohashi, T. Hattori, K. Yokomakura,
C. Kabuto and S. Miyano, Tetrahedron Lett., 2002, 43, 7769;
O. Saied, M. Simard and J. D. Michel, Inorg. Chem., 1998, 37,
2620, and references therein.
24 A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
3 6 9 4
D a l t o n T r a n s . , 2 0 0 4 , 3 6 8 9 – 3 6 9 4