Journal of the American Chemical Society
Communication
T. J. Am. Chem. Soc. 2010, 132, 1236−1237. (c) Iwama, Y.; Okano, K.;
Sugimoto, K.; Tokuyama, H. Org. Lett. 2012, 14, 2320−2322.
(d) Iwama, Y.; Okano, K.; Sugimoto, K.; Tokuyama, H. Chem.
Eur. J. 2013, 19, 9325−9334.
Experimentally, it was found that dissolving (+)-melodinine E
(3) in acidic THF solution (THF−3N H2SO4 (v/v = 2/1)) at
room temperature led to the rapid disappearance of 3 affording
presumably the N-acyliminum ion 27. However, only starting
material was recovered upon workup indicating that the
intermolecular addition of water to 27 might be a kinetically
slow process at this temperature. Gratefully, by simply heating a
solution of 3 in THF−3N H2SO4 (v/v = 2/1) at 40 °C for 2.5
h, the (−)-leuconolam (5) was produced cleanly in 70%
isolated yield. The structure of our synthetic sample was
confirmed by X-ray crystal analysis, confirming therefore the
absolute configuration of this natural product. It is worth noting
that the addition of water to C21 of the N-acyliminium took
place from the same face occupied by the neighboring ethyl
substituent placing therefore both the hydroxy and the ethyl
groups in the convex face defined by the B−C−D ring.
Additionally, only one atropisomer corresponding to the
natural product was produced.
In conclusion, we developed a convergent and divergent
approach to reach the structurally distinct leuconolam−
leuconoxine−mersicarpine subfamily of Aspidosperma alkaloids.
The Suzuki−Miyaura coupling of vinyl iodide 8 with 2-
nitrophenyl boronic acid (9) afforded a functionalized
cyclohexenone derivative 7 that was subsequently diversified
into different natural products by controlled oxidation/
reduction/polycyclization sequences. Key to the success of
the structure diversification is the fine-tuning of the
nucleophilicity of the primary amine (N4) and the electro-
philicity of the C7 carbonyl vs C21 iminyl groups in the
putative 3H-indol-3-one intermediate. This deceptively simple
synthetic strategy allowed us to develop a protecting-group-free
synthesis20 of structurally complex and diverse alkaloids under
operationally simple conditions.
(4) (a) Biechy, A.; Zard, S. Z. Org. Lett. 2009, 11, 2800−2803.
(b) Zhong, X.; Li, Y.; Han, F.-S. Chem.Eur. J. 2012, 18, 9784−9788.
(5) (a) Feng, T.; Cai, X.-H.; Zhao, P.-J.; Du, Z.-Z.; Li, W.-Q.; Luo, X.-
D. Planta Med. 2009, 75, 1537−1541. (b) Gan, C.-Y.; Low, Y.-Y.;
Thomas, N. F.; Kam, T.-S. J. Nat. Prod. 2013, 76, 957−964. (c) Feng,
T.; Cai, X.-H.; Liu, Y.-P.; Li, Y.; Wang, Y.-Y.; Luo, X.-D. J. Nat. Prod.
2010, 73, 22−26. (d) Abe, F.; Yamauchi, T. Phytochemistry 1994, 35,
169−171.
́
(6) (a) Hugel, G.; Levy, J.; Le Men, J. Tetrahedron Lett. 1974, 15,
3109−3112. (b) Croquelois, G.; Kunesch, N.; Poisson, J. Tetrahedron
Lett. 1974, 15, 4427−4430. (c) Goh, S. H.; Ali, A. R. M. Tetrahedron
Lett. 1986, 27, 2501−2504. (d) Goh, S. H.; Ali, A. R. M.; Wong, W. H.
Tetrahedron 1989, 45, 7899−7920.
(7) Goh, S. H.; Wei, C.; Ali, A. R. M. Tetrahedron Lett. 1984, 25,
3483−3484.
(8) (a) Banwell, M. G.; Beck, D. A. S.; Willis, A. C. ARKIVOC 2006,
No. iii, 163−174. (b) Izgu, E. C.; Hoye, T. R. Chem. Sci. 2013, 4,
2262−2266.
(9) (a) Gerfaud, T.; Xie, C.; Neuville, L.; Zhu, J. Angew. Chem., Int.
Ed. 2011, 50, 3954−3957. (b) Xu, Z.; Wang, Q.; Zhu, J. Angew. Chem.,
Int. Ed. 2013, 52, 3272−3276.
(10) For a uniform numbering system for monoterpene indole
alkaloids, see: Le Men, J.; Taylor, W. I. Experientia 1965, 21, 508−510.
(11) McMurray, L.; Beck, E. M.; Gaunt, M. J. Angew. Chem., Int. Ed.
2012, 51, 9288−9291.
(12) (a) Behenna, D. C.; Mohr, J. T.; Sherden, N. H.; Marinescu, S.
C.; Harned, A. M.; Tani, K.; Seto, M.; Ma, S.; Novak, Z.; Krout, M. R.;
́
McFadden, R. M.; Roizen, J. L.; Enquist, J. A., Jr.; White, D. E.; Levine,
S. R.; Petrova, K. V.; Iwashita, A.; Virgil, S. C.; Stoltz, B. M. Chem.
Eur. J. 2011, 17, 14199−14223. (b) Hong, A. Y.; Stoltz, B. M. Eur. J.
Org. Chem. 2013, 2745−2759.
(13) Kabalka, G. W.; Gooch, E. E. J. Org. Chem. 1981, 46, 2582−
2584.
(14) Nicolaou, K. C.; Montagnon, T.; Baran, P. S.; Zhong, Y.-L. J.
Am. Chem. Soc. 2002, 124, 2245−2258.
(15) (a) Myers, A. G.; Herzon, S. B. J. Am. Chem. Soc. 2003, 125,
12080−12081. (b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95,
2457−2483.
(16) Schreiber, S. L.; Claus, R. E.; Reagan, J. Tetrahedron Lett. 1982,
23, 3867−3870.
(17) Hester, J. B., Jr. J. Org. Chem. 1967, 32, 3804−3808.
(18) Krueger, P. J. Can. J. Chem. 1973, 51, 1363−1367.
(19) This compound has also been isolated as a metabolite of
ASSOCIATED CONTENT
■
S
* Supporting Information
1
Experiment procedures, spectroscopic data, copies of the H
and 13C NMR spectra, and X-ray structural data (CIF). This
material is available free of charge via the Internet at http://
AUTHOR INFORMATION
Corresponding Author
Notes
■
rhazinilam and was named diazaspiroleuconolam; see: Dec
Bellocq, D.; Thoison, O.; Lekieffre, N.; Chiaroni, A.; Ouazzani, J.;
Cresteil, T.; Gueritte, F.; Baudoin, O. Bioorg. Med. Chem. 2006, 14,
1558−1564.
́
or, A.;
́
The authors declare no competing financial interest.
(20) (a) Hoffmann, R. W. Synthesis 2006, 3531−3541. (b) Young, I.
S.; Baran, P. S. Nat. Chem. 2009, 1, 193−205.
ACKNOWLEDGMENTS
■
We thank EPFL (Switzerland), Swiss National Science
Foundation (SNSF) for financial support. We thank Prof.
Olivier Baudoin for providing us copies of the NMR spectra of
leuconoxine (diazaspiroleuconolam). We are grateful to Dr.
Rosario Scopelliti for performing the X-ray crystallographic
analysis.
REFERENCES
■
(1) (a) Haj
́
íce
̌
k, J. Collect. Czech. Chem. Commun. 2011, 76, 2023−
2083. (b) Ishikura, M.; Abe, T.; Choshi, T.; Hibino, S. Nat. Prod. Rep.
2013, 30, 694−752 and references cited therein.
(2) Kam, T.-S.; Subramaniam, G.; Lim, K.-H.; Choo, Y.-M.
Tetrahedron Lett. 2004, 45, 5995−5998.
(3) (a) Magolan, J.; Carson, C. A.; Kerr, M. A. Org. Lett. 2008, 10,
1437−1440. (b) Nakajima, R.; Ogino, T.; Yokoshima, S.; Fukuyama,
D
dx.doi.org/10.1021/ja4115192 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX