DAF-2, APF, HPF. 15 lM NODTTNO were mixed immedi-
ately with DAF-2, APF or HPF (10 lM each), and the samples were
incubated for 180 min at 37 ◦C in the dark room. Afterwards, the
concentration of DAF-2T or fluorescein was read fluorometrically.
The APF- and HPF-derived formation of fluorescein or the DAF-
2-mediated formation of DAF-2T were quantified by reading
their fluorescence with excitation at 495 nm and emission at
515 nm, respectively. Standard calibration curves were prepared
from known amounts of fluorescein and DAF-2T.
14 D. A. Stoyanovsky, Y. Y. Tyurina, V. A. Tyurin, D. Anand, D. N.
Mandavia, D. Gius, J. Ivanova, B. Pitt, T. R. Billiar and V. E. Kagan,
J. Am. Chem. Soc., 2005, 127, 15815–15823.
15 D. R. Arnelle and J. S. Stamler, Arch. Biochem. Biophys., 1995, 318,
279–285.
16 C. Petit, P. Hoffmann, J. P. Souchard, F. Nepveu and S. Labidalle,
C. R. Seances Soc. Biol. Ses Fil., 1996, 190, 641–650.
17 J. P. Barton and J. E. Packer, Int. J. Radiat. Phys. Chem., 1970, 2,
159–166.
18 M. Quintiliani, R. Badiello, M. Tamba, A. Esfandi and G. Gorin,
Int. J. Radiat. Biol., 1977, 32, 195–202.
19 D. Nikitovic and A. Holmgren, J. Biol. Chem., 1996, 271, 19180–19185.
20 A. P. Dicks, H. R. Swift, D. L. H. Williams, A. R. Butler, H. H. Al-
Sa’doni and B. G. Cox, J. Chem. Soc., Perkin Trans. 2, 1996, 481–487.
21 D. L. H. Williams, Chem. Commun., 1996, 1085–1091.
22 M. W. Brock, C. Mathes and W. F. Gilly, J. Gen. Physiol., 2001, 118,
113–133.
23 S. Goldstein and G. Czapski, J. Am. Chem. Soc., 1996, 118, 3419–3425.
24 M. Kirsch and H. de Groot, J. Biol. Chem., 2002, 277, 13379–13388.
25 N. W. Kooy, J. A. Royall, H. Ischiropoulos and J. S. Beckman, Free
Radical Biol. Med., 1994, 16, 149–156.
Quantum chemical calculations
Complete basis set (CBS-QB3) computations were carried out with
the Gaussian 03 (Revision A.11.3) suite of programs.60 Aqueous
solvation free energies were evaluated on the optimized gas-phase
geometries with the CPCM61 procedure incorporated in Gaussian
03. Both the CPCM/UHF/6-31+G(d) and the CBS-QB3 method-
ology are known to provide estimates within “chemical accuracy”
26 H. Ischiropoulos, D. Duran and J. Horwitz, J. Neurochem., 1995, 65,
2366–2372.
2–3 kcal mol−1). Isotropic absolute shielding constants of
27 M. Kirsch, A. Fuchs and H. de Groot, J. Biol. Chem., 2003, 278,
(
11931–11936.
the nitrogen nucleus were calculated with the individual gauges
for atoms in molecules (IGAIM) protocol62 at the B97-2/aug-
cc-pVDZ level of theory. The optimization of the structure and
molecular interactions with the solvent were followed at the same
level of theory as described above.
28 K. M. Miranda, M. G. Espey, N. Ludwick, S. M. Kim, D. Jourd’heuil,
M. B. Grisham, M. Feelisch, J. M. Fukuto and D. A. Wink, J. Biol.
Chem., 2001, 276, 1720–1727.
29 K. Setsukinai, Y. Urano, K. Kakinuma, H. J. Majima and T. Nagano,
J. Biol. Chem., 2003, 278, 3170–3175.
30 R. S. Lewis, S. R. Tannenbaum and W. D. Deen, J. Am. Chem. Soc.,
1995, 117, 3933–3939.
31 D. A. Stoyanovsky, R. Clancy and A. I. Cederbaum, J. Am. Chem. Soc.,
1999, 121, 5093–5094.
Statistics
32 L. Grossi and P. C. Montevecchi, Chem.–Eur. J., 2002, 8, 380–387.
33 K. Sonnenschein, H. de Groot and M. Kirsch, J. Biol. Chem., 2004,
279, 45433–45440.
All experiments were carried out independently at least three times
on different days. The results are expressed as means S.D.
34 M. A. Marti, S. E. Bari, D. A. Estrin and F. Doctorovich, J. Am. Chem.
Soc., 2005, 127, 4680–4684.
35 K. M. Faulkner, S. I. Liochev and I. Fridovich, J. Biol. Chem., 1994,
269, 23471–23476.
Acknowledgements
36 M. Kirsch and H. de Groot, J. Pineal Res., 2008, 44, 244–249.
37 S. I. Liochev and I. Fridovich, J. Biol. Chem., 2001, 276, 35253–35257.
38 M. Kelm, R. Dahmann, D. Wink and M. Feelisch, J. Biol. Chem., 1997,
272, 9922–9932.
Sonja Liebeskind was supported by an IFORES grant of the
Universita¨t Duisburg-Essen.
39 B. Bujnicki, J. Drabowicz, M. Mikolajczyk, A. Kolbe and L. Stefaniak,
J. Org. Chem., 1996, 61, 7593–7596.
40 L. Stefaniak, G. A. Webb and M. Witanowski, Annu. Rep. NMR
Spectrosc., 1993, 25.
41 S. Goldstein and G. Czapski, J. Am. Chem. Soc., 1995, 117, 12078–
12084.
References
1 L. J. Ignarro, H. Lipton, J. C. Edwards, W. H. Baricos, H. L. Hyman,
P. J. Kadowitz and C. A. Gruetter, J. Pharmacol. Exp. Ther., 1981, 218,
739–749.
2 S. Moncada, R. M. J. Palmer and E. A. Higgs, Pharmacol. Rev., 1991,
43, 109–142.
3 J. S. Stamler, Circ. Res., 2004, 94, 414–417.
4 B. M. Gaston, J. Carver, A. Doctor and L. A. Palmer, Mol. Interven-
tions, 2003, 3, 253–263.
5 S. R. Jaffrey, H. Erdjument-Bromage, C. D. Ferris, P. Tempst and S. H.
Snyder, Nat. Cell Biol., 2001, 3, 193–197.
6 G. Melino, F. Bernassola, R. A. Knight, M. T. Corasaniti, G. Nistico
and A. Finazzi-Agro, Nature, 1997, 388, 432–433.
7 J. B. Mannick, X. Q. Miao and J. S. Stamler, J. Biol. Chem., 1997, 272,
24125–24128.
8 Y.-M. Kim, R. V. Talanian and T. R. Billiar, J. Biol. Chem., 1997, 272,
31138–31148.
9 S. Z. Lei, Z.-H. Pan, S. K. Aggarwal, H.-S. V. Chen, J. Hartmann, N. J.
Sucher and S. A. Lipton, Neuron, 1992, 8, 1987–1099.
10 L. Xu, J. P. Eu, G. Meissner and J. S. Stamler, Science, 1998, 279,
234–237.
42 D. L. H. Williams, Nitrosation reactions and the chemistry of nitric
oxide, Elsevier, Amsterdam, 2004.
43 L. J. Ignarro, J. M. Fukuto, J. M. Griscavage, N. E. Rogers and R. E.
Byrns, Proc. Natl. Acad. Sci. USA, 1993, 90, 8103–8107.
44 P. G. Wang, M. Xian, X. Tang, X. Wu, Z. Wen, T. Cai and A. J. Janczuk,
Chem. Rev., 2002, 102, 1091–1134.
45 M. D. Bartberger, J. D. Mannion, S. C. Powell, J. S. Stamler, K. N.
Houk and E. J. Toone, J. Am. Chem. Soc., 2001, 123, 8868–8869.
46 M. Tronc, A. Huetz, M. Landau, F. Pichou and J. Reinhardt, J. Phys.
B: At. Mol. Phys., 1975, 8, 1160–1169 .
47 V. Shafirovich and S. V. Lymar, Proc. Natl. Acad. Sci. USA, 2002, 99,
7340–7345.
48 D. A. Stoyanovsky, J. Am. Chem. Soc., 2005, 127, 15815–15823.
49 Y. Zhang and N. Hogg, Free Radical Biol. Med., 2005, 38, 831–838.
50 A. Meister, J. Biol. Chem., 1988, 263, 17205–17208.
51 R. K. Murray, D. K. Granner, P. A. Mayes and V. W. Rodwell, Harper’s
Illustrated Biochemistry, McGraw-Hill Companies, New York, 24th
edn, 2003.
52 M. Kirsch and H. de Groot, J. Biol. Chem., 2000, 275, 16702–16708.
53 M. Kirsch and H. de Groot, J. Pineal Res., 2006, 40, 10–17.
54 A. J. Holmes and D. L. H. Williams, J. Chem. Soc., Perkin Trans. 2,
2000, 1639–1644.
11 J. Sun, C. Xin, J. P. Eu, J. S. Stamler and G. Meissner, Proc. Natl. Acad.
Sci. USA, 2001, 98, 11158–11162.
12 S. P. Singh, J. S. Wishnok, M. Keshive, W. M. Deen and S. R.
Tannenbaum, Proc. Natl. Acad. Sci. USA, 1996, 93, 14428–14433.
13 P. S.-Y. Wong, J. Hyun, J. M. Fukuto, F. N. Shirota, E. G. deMaster,
D. W. Shoeman and H. T. Nagasawa, Biochemistry, 1998, 37, 5362–
5371.
55 R. Bonnett and R. Holleyhead, J. Chem. Soc., Perkin Trans. 1, 1974,
962–964.
2572 | Org. Biomol. Chem., 2008, 6, 2560–2573
This journal is
The Royal Society of Chemistry 2008
©