10
J Solution Chem (2007) 36:1–11
14, 709–715 (2001); b) Alvarado, Y.J., Cubilla´n, N., Labarca, P.H., Karma, A., Arrieta, F., Castellano,
O., Soscu´n, H.: Static and dynamic dipole polarizabilities of 2- and 3-methylthiophene in solution:
experimental and theoretical determination. J. Phys. Org. Chem. 15, 154–164 (2002); c) Alvarado, Y.J.,
Soscu´n, H., Velazco. W., Labarca, P.H., Cubilla´n, N., Hernandez, J.: Dipole polarizability of the pyrazabole
molecule in solution. J. Phys. Org. Chem. 15, 835–843 (2002); d) Alvarado, Y.J., Labarca, P.H., Cubilla´n,
N., Osorio, E., Karam, A.: Solvent effect on electronic polarizability of benzonitrile. Z. Naturforsch.
58a, 68–74 (2003); e) Alvarado, Y.J., Pen˜a-Sua´rez, J.L., Cubilla´n, N., Labarca, P.H., Caldera-Luzardo,
J.A., Lo´pez-Linares, F.: Influence of the dielectric medium on the carbonyl infrared absorption peak of
acetylferrocene. Molecules 10, 457–474 (2005); f) Alvarado, Y.J., Caldera-Luzardo, J., De La Cruz, C.,
Ferrer-Amado, G., Michelena, E., Silva, P.: Volumetric, electric, and magnetic properties of thioxanthen-
9-one in aprotic solvents as revealed by high-precision densitometry, high-accuracy refractometry and
magnetic susceptibility measurements and by DFT calculations. J. Solution Chem. 35, 29–49 (2006); g)
Soscun, H., Herna´ndez, J., Escobar, R., Toro-Mendoza, C., Alvarado, Y., Hinchliffe, A.: Ab-initio and
density functional theory calculations of the dipole polarizability and the second dipole hyperpolarizability
of benzene. Int. J. Quant. Chem. 90, 497–506 (2002).
¨
¨
5. a) Kohner, H.: Uber die Konzentrationsabha¨ngigkeit der Aquivalentrefraktion von starken Elektrolyten
¨
in Lo¨sung. Z. Phys Chem. B1, 427–455 (1928); b) Geffcken, W.: Uber die Konzentrationsabha¨ngigkeit
der Aquivalentrefraktion von starken Elektrolyten in Lo¨sung. Z. Phys Chem. B5, 81–123 (1929); (c)
¨
Grunwald, E., Haley, J.; Acid dissociation constantsof trifluoroacetic acid in water measured by differential
refractometry. J. Phys. Chem. 72, 1944–1948 (1968).
6. a) Sakuray, M.: Partial volumes in aqueous mixtures of nonelectrolytic. IV. Aromatic hydrocarbons. Bull.
Chem. Soc. Jpn. 63, 1695–1699 (1990); b) For the extremally dilute regime, Eq. (2) also can be deduced
from an expansion in Taylor series of the density, see: Petty, H.R., Crumb, J.A., Anderson, V.E., Arakawa,
E.T., Baird, J.K.: New differential Bottcher-Onsager method used to determine polarizability and apparent
radius of SiO4(WO3)412−. J. Phys. Chem. 81, 696–703 (1977).
7. a) Mizyed, S., Tremaine, P. Georghiou, P.: Partial molar volumes study of the complexes of
calix[4]naphthalenes with [60]fullerene in different solvents. J. Chem. Soc. Perkin Trans. 2, 3–6 (2001);
b) Bernazzani, L., Mollica, V., Tine´, M.: Partial volumes of organic compounds in C8 solvents at 298.15
K. Fluid Phase Equilib. 203, 15–29 (2002).
8. a) Hohm, U., Goebel, D., Grimme, S.: Experimental study of the dipole polarizability of ferrocene
Fe(C5H5)2. Chem. Phys. Lett. 272, 328–334 (1997); b) Brocos, P., Pin˜ero, A., Bravo, R., Amigo, A.: Re-
fractive indices, molar volumes and molar refractions of binary liquid mixtures: concepts and correlations.
Phys. Chem. Chem. Phy. 5, 550–557 (2003).
9. a) Calderbank, K., Calvert, R., Lukins, P., Ritchie, G.: Magnetic anisotropies and relatives aromaticities
of pyrrole, pyrazole, imidazole and their N-methyl derivatives. Aust. J. Chem. 34, 1835–1844 (1981); b)
Gussoni, M., Rui, M., Zerbi, G.: Electronic and relaxation contribution to linear molecular polarizability.
An analysis of the experimental values. J. Mol. Struct. 447, 163–214 (1998).
10. Manuscript in preparation.
11. a) Snyder, C., Douglas, J.: Determination of the dielectric constant of nanoparticules. 1. Dielectric
measurements of buckminsterfullerene solutions. J. Phys. Chem. B 104, 11058–11065 (2000); b) Kell,
G.S.: Isothermal compressibility of liquid water at 1 atm. J. Chem. Eng. Data. 15, 119–122 (1970).
12. a) Ruelle, P., Farina-Cuendet, A., Kesselring, U.W.: Changes of molar volume from solid to liquid and
solution: The particular case of C60. J. Am. Chem. Soc. 118, 1777–1784 (1996); b) Aminabhavi, T.M.,
Patel, R.C., Jayadevappa, E.S., Prasad, B.R.: Excess volume and excess polarizability during mixing of
binary solvents. J. Chem. Eng. Data. 27, 50–53 (1982); c) Rudan-Tasic, D., Klofutar, C.: Apparent molar
volume and expansibility of cyclohexanol in benzene and cyclohexane. Monasth. Chem. 129, 1245–1257
(1998).
13. a) Jannell, L., Lo´pez, A., Saiello, S.: Thermodynamic and physical properties of binary mixture involving
sulfolane. Excess volumes and dielectric constants of benzonitrile-sulfolane and acetonitrile-sulfolane
systems. J. Chem. Eng. Data 25, 259–263 (1980); b) Chastrette, M., Rajzmann, M., Chanon, M., Purcell,
K.: Approach to a general classification of solvents using a multivariate statistical treatment of quantitative
solvent parameters. J. Am. Chem. Soc. 107, 1–11 (1985); c) Kolling, O., Aprotic solvent effects upon the
fundamental vibrational peak of the nitrile group in benzonitrile, Appl. Spectrosc. 54, 890–893 (2000); d)
Abboud, L., Notario, R.: Critical compilation of scales of solvent parameters. Part I. Pure, non-hydrogen
bond donor solvents. Pure Appl. Chem. 71, 645–718 (1999); (e) Fawcett, W., Liu, G., Kessler, T.: Solvent-
induced frequency shifts in the infrared spectrum of acetonitrile in organic solvents. J. Chem. Phys. 97,
9293–9298 (1993); f) Chen Ku, H., Hsiun Tu., C.: Density and viscosity of binary mixtures of propan-
2-ol, 1-chlorobutane, and acetonitrile. J. Chem. Eng. Data. 43, 465–468 (1998); g) Paez, S., Contreras,
M.: Densities and viscosities of binary mixtures of 1-propanol with acetonitrile. J. Chem. Eng. Data. 34,
455–459 (1989).
Springer