SCHEME 1
Synthesis of 4′-Methyl and 4′-Cyano
Carbocyclic 2′,3′-Didehydro Nucleoside
Analogues via 1,4-Addition to Substituted
Cyclopentenones
Louis S. Hegedus* and Jeff Cross
Department of Chemistry, Colorado State University,
Fort Collins, Colorado 80523
Received June 14, 2004
Approaches to 4′-substituted nucleoside analogues,9 as
well as the synthesis of cyclobut-A,10 neplanocin A,11 and
aristeromycin and carbovir,12 utilizing chromium car-
bene-derived optically active cyclobutanones13 as precur-
sors have recently been reported from these laboratories.
Application of this approach to the synthesis of 4′-
substituted carbocyclic nucleosides is presented below.
The approach taken to 4′-substituted carbocyclic nu-
cleosides (Scheme 1) involved stereoselective conjugate
addition to optically active cyclopentenone 1, followed by
oxazolidinone elimination,14 ketone reduction and esteri-
fication, and introduction of the nucleoside base via well-
established π-allylpalladium chemistry.15 Cyclopentenone
1 was available in three steps in 70% overall yield
utilizing previously developed methodology.12 Conjugate
methylation proved problematic (eq 1).
Abstract: Carbocyclic 4′-methyl and 4′-cyano nucleoside
analogues were synthesized using the Michael reaction to
introduce the 4′-substituent and Pd-catalyzed allylic sub-
stitution to introduce the nucleoside base. Use of both the
desired â- and undesired R-1′-carbonate diastereomers in the
Pd-catalyzed substitution was demonstrated in principle by
epimerization of the R-diastereomer and kinetic diastereo-
differentiation of a 1:1 R/â mixture of 1′-carbonates.
The broad antitumor and antiviral activity displayed
by the naturally occurring carbocyclic nucleosides
neplanocin A and aristeromycin1 coupled with their
greater metabolic stability relative to their glycosidic
relatives2 have made carbocyclic nucleoside analogues the
focus of intensive synthetic studies.3 The observation that
4′-substituted nucleosides also had wide-ranging biologi-
cal activity4 spurred similar interest in their synthesis.5
Substantially less effort has been directed toward the
synthesis of 4′-substituted carbocyclic nucleosides, al-
though cyclopentanoid nucleosides having F,6 OH,6 alkyl,7
and aryl8 substituents at the 4′-position have been
reported.
(1) (a) Yaginuma, S.; Muto, N.; Tsujino, M.; Sudate, Y.; Hayashi,
M.; Otani, M. J. Antibiot. 1981, 34, 359. (b) Shealy, Y. F.; Clayton, J.
D. J. Am. Chem. Soc. 1969, 91, 3075. (c) DeClercq, E.; Cools, M.;
Balzarini, J.; Marquez, V. E.; Borcherding, D. R.; Borchardt, R. T.;
Drach, J. C.; Kitaoka, S.; Konno, T. Antimicrob. Agents Chemother.
1989, 28, 1291. (d) Borchardt, R. T.; Keller, B. T.; Patel-Thrombre, U.
J. Biol. 1984, 259, 4353. (e) For a review of the chemical and biological
properties of carbocyclic nucleosides, see: Marquez, V. E.; Lim, M. I.
Med. Res. Rev. 1986, 6, 1.
(2) Herdewijn, P.; De Clercq, E.; Balzarini, J.; Vanderhaeghe, H. J.
Med. Chem. 1985, 28, 550.
Typical conjugate alkylation conditions utilizing lithium
dimethylcuprate resulted in no reaction when the mix-
(3) For reviews, see: (a) Rodriguez, J. B.; Comin, M. J. Mini Rev.
Med. Chem. 2003, 3, 95. (b) Schneller, S. W. Curr. Top. Med. Chem.
2002 2, 1087. (c) Crimmins, M. T. Tetrahedron 1998, 54, 9229.
(4) Prisbe, E. J.; Maag, H.; Verheyden, J. P. H.; Rydzewski, R. M.
Structure-Activity Relationships Among HIV Inhibitory 4′-Substituted
Nucleosides. In Nucleosides and Nucleotides as Antitumor and Anti-
viral Agents; Chu, C. K., Baker, D. C., Eds.; Plenum Press: New York,
1993; pp 101-113.
(5) For recent examples, see: (a) Haraguchi, K.; Takeda, S.; Tanaka,
H.; Org. Lett. 2003, 5, 1399. (b) Jung, M. E.; Toyota, A. J. Org. Chem.
2001, 66, 2624. (c) Crich, D.; Hao, X. J. Org. Chem. 1999, 64, 4016. (d)
Crich, D.; Hao, X. J. Org. Chem. 1998, 63, 3796. (e) Maag, H.;
Rydzewski, R. M.; McRoberts, M. J.; Crawford-Ruth, D.; Verheyden,
J. P. H.; Prisbe, E. J. J. Med. Chem. 1992, 35, 1440.
(7) (a) Nieto, M. K.; Blanco, J. M.; Caaman˜o, O.; Fernandez, F.;
Garcia-Mera, X.; Lopez, C.; Balzarini, J.; DeClerq, E. Nucleosides
Nucleotides 1999, 18, 2253. (b) Nieto, M. I.; Blanco, J. M.; Caaman˜o,
O.; Fernandez, F.; Garcia-Mera, X.; Balzarini, J.; Padalko. E.; Neyts,
J.; DeClerq, E. Nucleosides Nucleotides 1998, 17, 1255. (c) Kato, K.;
Suzuki, H.; Tanaka, H.; Miyasaka, T. Tetrahedron: Asymmetry 1998,
9, 911.
(8) Hong, J. H.; Ko, O. H. Bull. Korean Chem. Soc. 2003, 24, 1289.
(9) (a) Hegedus, L. S.; Geisler, L.; Riches, A. G.; Salman, S. S.;
Umbricht, G. J. Org. Chem. 2002, 67, 7649. (b) Hegedus, L. S.; Hervert,
K. L.; Matsui, S. J. Org. Chem. 2002, 67, 4076. (c) Reed, A. D.; Hegedus,
L. S. Organometallics 1997, 16, 2313.
(6) (a) Gumina, G.; Chong, Y.; Choi, Y.; Chu, C. K. Org. Lett. 2000,
2, 1229. (b) Csuk, R.; Do¨rr, P.; Ku¨hn, M.; Krieger, C.; Antipin, M. Y.
Z. Naturforsch. 1999 546, 1068. (c) Csuk, R.; Do¨rr, P.; Ku¨hn, M.;
Krieger, C.; Irngartinger, H.; Oeser, T.; Antipin, M. Y. Z. Naturforsch.
1999, 546, 1079. (d) Wachtmeister, J.; Mu¨hlman, A.; Classon, B.;
Samuelsson, B. Tetrahedron 1999, 55, 10761. (e) Borthwick, A. D.;
Biggadike, K.; Paternoster, I. L.; Coates, J. A. V.; Knight, D. Biorg.
Med. Chem. Lett. 1993, 3, 2577. (f) Biggadike, K.; Borthwick, A. D. J.
Chem. Soc., Chem. Commun., 1990, 1380.
(10) Brown, B.; Hegedus, L. S. J. Org. Chem. 1998, 63, 8012.
(11) Geisler, L.; Hegedus, L. S. J. Org. Chem. 2000, 65, 4200.
(12) Brown, B.; Hegedus, L. S. J. Org. Chem. 2000, 65, 1865.
(13) Hegedus, L. S.; Bates, R. W.; So¨derberg, B. C. J. Am. Chem.
Soc. 1991, 113, 923.
(14) Miller, M.; Hegedus, L. S. J. Org. Chem. 1993, 58, 6779.
(15) (a) Trost, B. M.; Kuo, G.-H.; Benneche, T. J. Am. Chem. Soc.
1988, 110, 621. (b) For a review of palladium-catalyzed amination,
see: Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395.
10.1021/jo040215h CCC: $27.50 © 2004 American Chemical Society
Published on Web 10/30/2004
8492
J. Org. Chem. 2004, 69, 8492-8495