5994
G. Godin et al. / Bioorg. Med. Chem. Lett. 14 (2004) 5991–5995
2. (a) Compain, P.; Martin, O. R. Bioorg. Med. Chem. 2001,
9, 3077; (b) Compain, P.; Martin, O. R. Curr. Top. Med.
Chem. 2003, 3, 541; (c) Schramm, V. L.; Tyler, P. C. Curr.
Top. Med. Chem. 2003, 3, 525; (d) Lee, R. E.; Smith, M.
D.; Pickering, L.; Fleet, G. W. J. Tetrahedron Lett. 1999,
40, 8689; (e) Costin, G. E.; Trif, M.; Nichita, N.; Dwek, R.
A.; Petrescu, S. M. Biochem. Biophys. Res. Commun. 2002,
293, 918; (f) Jakobsen, P.; Lundbeck, J. M.; Kristiansen,
M.; Breinholt, J.; Demuth, H.; Pawlas, J.; Candela, M. P.
T.; Andersen, B.; Westergaard, N.; Lundgren, K.; Asano,
N. Bioorg. Med. Chem. 2001, 9, 733.
explained in terms of an aglycon-binding site having an
extended hydrophobic region.18 The lipophilic chain is
supposed to mimic the hydrophobic face23 of the mono-
saccharide unit a-glucosylated at O-6. However, an alkyl
chain at C-1 with the appropriate a-configuration seems
to be better positioned for suitable interactions with the
putative lipophilic pocket.
Another marked dependence of the selectivity and po-
tency upon the length of the alkyl chain is exemplified
by inhibition values observed for configuration-retaining
b-glucosidase from almond. IC50 values in the lM range
were found for a-1-C-hexyl-and a-1-C-octyl-1-deoxyno-
jirimycin whereas the parent propyl and butyl analogues
were devoid of inhibitory activity (Table 2). Further
extension of the alkyl chain, from octyl to nonyl, resulted
in a 6-fold decrease of activity. The IC50 value obtained
for a-C-hexyl-1-deoxynojirimycin (3b) is quite surprising
in light of the fact that 1-deoxynojirimycin derivatives
display generally weak inhibition towards configura-
tion-retaining b-glucosidases such as the one from al-
mond compared to azasugars having nitrogen instead
of the ÔanomericÕ carbon. Various structure–activity rela-
tionship studies, using mainly amino carbasugar probes,
have revealed the positive effect of a hydrophobic agly-
cone on b-glucosidase inhibition.1b This effect may be
sufficient to partially compensate for the unsuitable posi-
tion of the nitrogen atom in 1-deoxynojirimycin deriva-
tives and may explain that 3d displays relatively good
inhibitory activity towards b-glucosidase from almond.
3. (a) Iminosugars as Glycosidase Inhibitors: Nojirimycin and
Beyond; Stutz, A. E., Ed.; Wiley-VCH: New York, 1999;
¨
(b) Asano, N.; Nash, R. J.; Molyneux, R. J.; Fleet, G. W.
J. Tetrahedron: Asymmetry 2000, 11, 1645.
4. (a) Vasella, A.; Davies, G. J.; Bo¨hm, M. Curr. Opin. Chem.
Biol. 2002, 6, 619; (b) Heightman, T. D.; Vasella, A. T.
Angew. Chem., Int. Ed. 1999, 38, 750; (c) Withers, S. G.;
Namchuk, M.; Mosi, R. in Ref. 3a, pp 188–206; (d)
Davies, G.; Sinnott, M. L.; Withers, S. G. Glycosyl
transfer. In Comprehensive Biological Catalysis; Sinnott,
M. L., Ed.; Academic Press Limited: New York, 1997;
Chapter 3; pp 119–208; (e) Legler, G. Adv. Carbohydr.
Chem. Biochem. 1990, 48, 319.
5. Iminosugars: Recent Insights into Their Bioactivity and
Potential as Therapeutic Agents; Martin, O. R., Compain,
P., Eds.; Curr. Top. Med. Chem. 2003, 3(5).
6. (a) Butters, T. D.; Dwek, R. A.; Platt, F. M. Curr. Top.
Med. Chem. 2003, 3, 561; (b) Butters, T. D.; Dwek, R. A.;
Platt, F. M. Chem. Rev. 2000, 100, 4683; (c) Cox, T.;
Lachmann, R.; Hollak, C.; Aerts, J.; van Weely, S.;
Hrebicek, M.; Platt, F.; Butters, T.; Dwek, R.; Moyses, C.;
Gow, I.; Elstein, D.; Zimran, A. The Lancet 2000, 355,
1481.
´
7. (a) Durantel, D.; Branza-Nichita, N.; Carrouee-Durantel,
S.; Butters, T. D.; Dwek, R. A.; Zitzmann, N. J. Virol.
2001, 75, 8987, and references cited therein; (b) Greimel,
4. Conclusion
P.; Spreitz, J.; Stutz, A. E.; Wrodnigg, T. M. Curr. Top.
¨
Med. Chem. 2003, 3, 513.
In conclusion, a range of a- and b-1-C-alkyl-1-deoxyno-
jirimycin derivatives have been synthesized and evalu-
ated as glycosidase inhibitors. This structure–activity
relationship study showed a marked dependence of the
selectivity and potency upon the position and the length
of the alkyl chain. The best result was obtained with a-1-
C-nonyl-1-deoxynojirimycin (3d), a potent and selective
inhibitor of rat intestinal isomaltase (IC50 3.5nM, an
inhibitor 25-fold more potent than the lower a-1-C-octyl
homologue). These findings demonstrate that subtle
changes in the iminosugar aglycone region may result
in remarkable enzyme specificity. Application of this
principle to glycosidases of therapeutic relevance is cur-
rently under investigation in our laboratory.
8. (a) Godin, G.; Compain, P.; Masson, G.; Martin, O. R. J.
Org. Chem. 2002, 67, 6960; (b) Godin, G.; Compain, P.;
Martin, O. R. Org. Lett. 2003, 5, 3269.
9. For seminal work concerning the synthesis of 1-C-alkyl-1-
deoxynojirimycin analogues see: Bo¨shagen, H.; Geiger,
W.; Junge, B. Angew. Chem., Int. Ed. Engl. 1981, 20,
806.
10. Perfetti, R.; Barnett, P. S.; Mathur, R.; Egan, J. M.
Diabetes Metab. Rev. 1998, 14, 207.
1
11. Spectral properties (IR, HRMS, H and 13C NMR) of all
new compounds are in good agreement with the proposed
structures. For a representative example see selected data
for compound 3c: 1H NMR (500MHz, CD3OD): d 0.83 (t,
3H, J = 7.3Hz), 1.20–1.30 (m, 11H), 1.36–1.47 (m, 2H),
1.56 (m, 1H), 2.63 (ddd, 1H, J = 3.2, 7.8, 9.6Hz, H-5), 2.93
(ddd, 1H, J = 3.2, 5.5, 11.0Hz, H-1), 3.01 (dd, 1H, J = 8.7,
9.6Hz, H-4), 3.35 (dd, 1H, J = 8.7, 9.6Hz, H-3), 3.39 (dd,
1H, J = 7.8, 11.0Hz, H-6a), 3.51 (dd, 1H, J = 5.5, 9.6Hz,
H-2), 3.81 (dd, 1H, J = 3.2, 11.0Hz, H-6b); 13C N MR
(125MHz, CD3OD): d 14.4, 23.7, 25.7, 27.4, 30.4, 30.7,
30.8, 33.1, 56.1 (C-5), 57.5 (C-1), 63.9 (C-6), 74.26 (C-2),
Acknowledgements
Financial support of this study by grants from CNRS
and the association ÔVaincre les Maladies LysosomalesÕ
is gratefully acknowledged. G.G. thanks the council of
20
74.33 (C-4), 76.1 (C-3); ½aꢁD +49 (c 0.52, MeOH); HRMS
´
Region Centre and the CNRS for a fellowship.
(FAB) m/z 276.2173 [M+H]+ (C14H30NO4 requires
276.2175).
12. For a related example of glycolipids synthesis by way of
cross-metathesis reaction from a- or b-D-allyl galactoside
derivatives see: Plettenburg, O.; Mui, C.; Bodmer-Nark-
evitch, V.; Wong, C.-H. Adv. Synth. Catal. 2002, 344, 622.
13. The a-glucosidases from rice and yeast, and b-glucosidases
from sweet almond and Caldocellum saccharolyticum were
References and notes
1. (a) Asano, N. Glycobiology 2003, 13, 93R–104R; (b)
Lillelund, V. H.; Jensen, H. H.; Liang, X.; Bols, M. Chem.
Rev. 2002, 102, 515.