Published on Web 01/07/2005
Intramolecular [2 + 2] Photocycloaddition/Thermal
Fragmentation: Formally “Allowed” and “Forbidden”
Pathways toward 5-8-5 Ring Systems
Scott J. Bader and Marc L. Snapper*
Contribution from the Department of Chemistry, Merkert Chemistry Center, Boston College,
2609 Beacon Street, Chestnut Hill, Massachusetts 02467
Received September 9, 2004; E-mail: marc.snapper@bc.edu
Abstract: The thermal fragmentation of highly functionalized, linear polycyclobutanes with a cis,syn,cis-
relative stereochemistry is shown to offer a rapid entry into the dicyclopenta[a,d]cyclooctenyl (5-8-5) ring
system. The thermolysis of polyfused cyclobutanes with a cis,syn,cis- or a cis,anti,cis-relationship proceeds
in a formally “symmetry-allowed” manner through the intermediacy of a cis,trans-cyclooctadiene. When a
bridging tether used to establish the cis,syn,cis-stereochemistry in the intramolecular [2 + 2] photocyclization
is present in the thermolysis step, however, the result of a formally “symmetry-forbidden” fragmentation is
observed yielding cis,cis-cyclooctadiene-containing 5-8-5 products. In general, the stereochemical
observations noted in these fragmentations offer new opportunities for accessing a variety of stereochemical
relationships in these 5-8-5 ring systems.
Introduction
of the allylic substituents on the cis,trans-cyclooctadiene
becomes inverted in the resulting cis,cis-1,5-cyclooctadiene
Martin and others have shown that cis,cis-1,5-cyclooctadiene
is generated upon thermal fragmentation of cis,syn,cis- and
cis,anti,cis-tricyclo[4.2.0.02,5]octanes (eq 1).11 Independent of
whether this is a concerted, symmetry-allowed [σ2a + σ2s]
fragmentation2 or a stepwise, biradical process as shown, it is
likely that the reaction proceeds through the intermediacy of a
cis,trans-1,5-cyclooctadiene.3 The resulting strained cyclooc-
tadiene can then isomerize through several Cope rearrangements
to the observed cis,cis-1,5-cyclooctadiene.4 Due to the ste-
reospecificity of Cope rearrangements, the configuration of one
product.
(1) (a) Martin, H.-D.; Eisenmann, E. Thermolysis of syn- and anti-Tricyclo-
[4.2.0.02,5]octane. Tetrahedron Lett. 1975, 661-664 and references therein.
For related fragmentations, see: (b) Cobb, R. L.; Mahan, J. E.; Fahey, D.
R. Dimers of Cyclobutene-1,2-dicarbonitrile and 1,3-Butadiene-2,3-dicar-
bonitrile: Preparation and Chemistry. J. Org. Chem. 1977, 42, 2601-2610.
(c) Walsh, R.; Martin, H.-D.; Kunze, M.; Oftring, A.; Beckhaus, H.-D.
Small Rings. Part 32. The Gas-Phase Kinetics, Mechanism, and Energy
Hypersurface for the Thermolyses of syn- and anti-Tricyclo[4.2.0.02,5]-
octane. J. Chem. Soc., Perkin Trans. 2 1981, 1076-1083. (d) Martin, H.-
D.; Hekman, M.; Rist, G.; Sauter, H.; Bellus, D. cis,trans-1,5-Cycloocta-
dienes. Angew. Chem., Int. Ed. Engl. 1977, 16, 406-407. (e) Martin, H.-
Along these lines, we have applied this fragmentation in the
rapid preparation of dicyclopenta[a,d]cyclooctenyl (5-8-5) ring
systems,5 a framework related to several diterpene natural
products. As illustrated in Scheme 1, we have shown that the
thermolysis of substituted cis,anti,cis-polyfused cyclobutanes,
D.; Eisenmann, E.; Kunze, M.; Bonacic-Koutecky, V. Die C8H12
-
Energiehyperfla¨che Thermolyse van syn und anti-Tricyclo[4.2.0.02, 5]octan.
Experimentelle und Theoretische Untersuchungen. Chem. Ber. 1980, 113,
1153. (f) Dave, P. R.; Duddu, R.; Li, J.; Surapaneni, R.; Gilardi, R.
Tetrahedron Lett. 1998, 39, 5481. (g) Bakkern, F. J. A. D.; Schro¨er, F.;
Klunder, A. J. H.; Zwanenburg, B. Tetrahedron Lett. 1998, 39, 9531-
9534.
(4) (a) Berson, J. A.; Dervan, P. B. J. Am. Chem. Soc. 1972, 94, 7597-7598.
(b) Berson, J. A.; Dervan, P. B.; Jenkins, J. A. J. Am. Chem. Soc. 1972,
94, 7598-7599.
(5) (a) Randall, M. L.; Lo, P. C.-K.; Bonitatebus, P. J.; Snapper, M. L. J. Am.
Chem. Soc. 1999, 121, 4534-4535. (b) Lo, P. C.-K.; Snapper, M. L. Org.
Lett. 2001, 3, 2819-2821. For examples of related cycloaddition/
fragmentations, see: (c) Wender, P. A.; Hubbs, J. C. J. Org. Chem. 1980,
45, 365-367. (d) Winkler, J. D.; Bowen, C. M.; Liotta, F. Chem. ReV.
1995, 95, 2003-2020. (e) Crimmins, M. T. Chem. ReV. 1988, 88, 1453-
1473. (f) Oppolzer, W. Acc. Chem. Res. 1982, 15, 135-141. (g) Wender,
P. A.; Eck, S. L. Tetrahedron Lett. 1982, 23, 1871-1874. (h) Lange, G.
L.; Organ, M. G. J. Org. Chem. 1996, 61, 5358-5361. (i) Lange, G. L.;
Lee, M. J. Org. Chem. 1987, 52, 325-331. (j) Kammermeier, S.; Herges,
R. Angew. Chem., Int. Ed. Engl. 1996, 35, 417-419. (k) Prinzbach, H.;
Weber, K. Angew. Chem., Int. Ed. Engl. 1994, 33, 2239-2257. (l) Mehta,
G.; Reddy, A. V.; Srikrishna, A. J. Chem. Soc., Perkin Trans. 1 1986,
291-297. (m) White, J. D.; Kim, J.; Drapela N. E. J. Am. Chem. Soc.
2000, 122, 8665.
(2) Woodward, R. B.; Hoffmann, R. The ConserVation of Orbital Symmetry;
Verlag Chemie Academic Press: Weinheim, Germany, 1970.
(3) Conformation restrictions limit stereomutation and fragmentation pathways
of these systems relative to the thermolyses of free cyclobutane. For lead
references into fragmentations of cyclobutanes, see: (a) Schaumann, E.;
Ketcham, R. Angew. Chem., Int. Ed. Engl. 1982, 21, 225. (b) Lewis, D.
K.; Glenar, D. A.; Kalra, B. L.; Baldwin, J. W.; Cianciosi, S. J. J. Am.
Chem. Soc. 1987, 109, 7225-7227. (c) Chickos, J. S.; Annamalai, A.;
Keiderling, T. A. J. Am. Chem. Soc. 1986, 108, 4398-4402. (d) Doubleday,
C., Jr. J. Am. Chem. Soc. 1993, 115, 11968-11983. (e) Hrovat, D. A.;
Borden, W. T. J. Am. Chem. Soc. 2001, 123, 4069-4072. For studies of
related systems, see: (f) Khuong, K. S.; Houk, K. N. J. Am. Chem. Soc.
2003, 125, 14867-14883.
9
10.1021/ja044542i CCC: $30.25 © 2005 American Chemical Society
J. AM. CHEM. SOC. 2005, 127, 1201-1205
1201