348
K. M. Brinner et al. / Bioorg. Med. Chem. Lett. 15 (2005) 345–348
Table 4. Comparison of IC50 and toxicity with LogD
Acknowledgements
Compd
IC50 (lM)a
Tox. (lM)b
LogDc
We gratefully acknowledge the support of the Medicines
for Malaria Venture. The Center for New Directions in
Organic Synthesis is supported by Bristol-Myers Squibb
as a Sponsoring Member.
7a
9b
7b
7c
4.3
2.5
6.0
2.6
2.9
2.7
1.2
1.3
2.5
1.2
2.2
7.6
4.7
À0.25
À0.44
À0.59
À0.70
0.7
0.92
0.85
0.40
0.30
0.20
0.20
0.20
0.075
>0.060
7d
9a
9c
0
0.11
0.77
2.11
3.12
1.41
References and notes
9d
10a
10d
9e
1. Woster, P. M. Annu. Rep. Med. Chem. 2001, 36, 99.
2. Krogstad, D. J. In Mechanisms of Microbial Disease, 2nd
Edn.; Schaechter, M., Medoff, G., Eisenstein, B. I., Eds.;
Williams and Wilkins: Baltimore, MD, 1993; pp 597–615.
3. Pagola, S.; Stephens, P. W.; Bohle, D. S.; Kosar, A. D.;
Madsen, S. K. Science 2000, 404, 307.
a Dd2.
b Human Foreskin Fibroblast.
c Determined by Robertson Microlit Laboratories, Inc. (Madison, NJ).
4. Choi, C. Y. H.; Schneider, E. L.; Kim, J. M.; Gluzman, I.
Y.; Goldberg, D. E.; Ellman, J. A.; Marletta, M. A. Chem.
Biol. 2002, 9, 881; For recent advances in new heme-
polymerization inhibitors, see: OÕNeill, P. M.; Mukhtar, A.;
Stocks, P. A.; Randle, L. E.; Hindley, S.; Ward, S. A.;
Storr, R. C.; Bickley, J. F.; OÕNeil, I. A.; Maggs, J. L.;
Highes, R. H.; Winstanley, P. A.; Bray, P. G.; Park, B. K.
J. Med. Chem. 2003, 46, 4933, and references cited therein.
5. Brinner, K. M.; Kim, J. M.; Habashita, H.; Gluzman, I. Y.;
Goldberg, D. E.; Ellman, J. A. Bioorg. Med. Chem. 2002,
10, 3649.
Table 5. Metabolism by liver microsomes
Compd
Human S9% remaininga
Mouse S9% remaininga
9e
10d
56
45
118
113
Experiment performed by PPDTM Discovery (Morrisville, NC).
a Single time point at 1h.
6. Gluzman, I. Y.; Francis, S. E.; Oksman, A.; Smith, C. E.;
Duffin, K. L.; Goldberg, D. E. J. Clin. Invest. 1994, 93,
1602.
to murine and human liver S9-fractions for one hour. As
seen in Table 5, both compounds are only 50% degraded
by human S9 fractions, and are not degraded at all by
murine S9 fractions.
7. 1H NMR (400MHz, MeOD-d3) d 0.91(t, J = 7.2Hz, 6H),
1.51–1.79 (m, 6H), 1.80 (q, J = 6.8Hz, 2H), 1.90 (m, 2H),
2.11 (m, 2H), 2.60 (m, 4H), 2.76 (t, J = 6.8Hz, 2H), 2.80 (m,
1H), 2.95 (d, J = 6.8Hz, 2H), 3.02 (m, 4H), 4.21(t,
J = 7.6Hz, 1H), 7.12 (m, 2H), 7.23 (m, 8H). 13C NMR
(125MHz, MeOD-d3) d 11.9, 20.0, 24.2, 30.7, 45.8, 49.5,
50.3, 53.1, 54.0, 56.3, 64.1, 127.3, 129.1, 129.4, 145.2. ESI-
MS (LR) [M+H]+ calcd for C28H43N3, 422.7; found, 422.5.
8. 1H NMR (500MHz, MeOD-d3) d 1.07 (t, J = 7.5Hz, 3H),
1.24 (m, 2H), 1.66 (m, 4H), 1.91 (t, J = 12Hz, 2H), 2.39 (m,
1H), 2.62 (m, 6H), 2.77 (m, 4H), 2.83 (m, 2H), 2.93 (d,
J = 7.5Hz, 2H), 4.13 (t, J = 7.5Hz, 1H), 7.12 (m, 2H), 7.23
(m, 8H), 7.32 (m, 3H), 7.42 (m, 2H), 7.56 (m, 2H), 7.61(m,
2H). 13C NMR (125MHz, MeOD-d3) d 11.5, 25.9, 31.4,
33.2, 46.0, 48.1, 50.3, 52.7, 53.5, 55.5, 56.2, 64.3, 127.2,
127.8, 128.0, 128.3, 129.1, 129.4, 129.9, 130.03, 140.2, 140.7,
142.1, 145.3. ESI-MS (LR) [M+H]+ calcd for C38H47N3,
546.8; found, 546.5.
We have further improved the activity of our new class
of non-aminoquinoline antimalarial compounds. These
compounds are easily and rapidly synthesized from sim-
ple, commercially available starting materials. In addi-
tion to improving the activity of initial hit 2 with an
IC50 of 900nM to lead compound 9e with an IC50 of less
than 60nM against a multi-drug-resistant strain of P.
falciparum, we improved the activity to cytotoxicity ra-
tio from 11:1 to 78:1. The most promising compounds
had acceptable logD values and were reasonably meta-
bolically stable in both human and murine liver S-9
fractions.