C O M M U N I C A T I O N S
Scheme 1. Hydrogenation by a Palladium Bisphosphine Complexa
a Color indicates the transformations of individual p-H2 molecules with the dominant catalytic formation of cis-stilbene indicated in bold, the secondary
isomerization to trans-stilbene competes on the NMR timescale.
the mapping of concerted catalytic hydrogenation by a palladium-
(II) bis-phosphine complex.
Acknowledgment. We are grateful to EU funding under the
HYDROCHEM network (contract HPRN-CT-2002-00176).
Supporting Information Available: Synthetic details and key
NMR observations. This material is available free of charge via the
References
(1) Negishi E.-I. Handbook of Organopalladium Chemistry for Organic
Synthesis; Wiley: New York, 2002.
(2) Pugh, R. I.; Drent, E. In Catalytic Synthesis of Alkene-Carbon Monoxide
Copolymers and Cooligomers; Sen, A., Ed.; Kluwer Academic Publish-
ers: Dordrecht, The Netherlands, 2003; Ch. 2.
Figure 1. (a) 1H{31P} spectrum of 2 in CD2Cl2 at 295 K showing key
alkyl proton resonances. (b) Magnetization transfer from the alkyl R-H of
2 to the â-H protons and free trans-stilbene after 800 ms.
(3) Clegg, W.; Eastham, G. R.; Eiselgood, M. R. J.; Heaton, B. T.; Iggo, J.
A.; Tooze, R. P.; Whyman R.; Zacchini, S. J. Chem. Soc., Dalton Trans.
2002, 3300-3308.
(4) Clegg, W.; Eastham, G. R.; Eiselgood, M. R. J.; Heaton, B. T.; Iggo, J. A.;
Tooze, R. P.; Whyman R.; Zacchini, S. Organometallics 2002, 1832-1840.
(5) Grushin, V. V. Chem. ReV. 1996, 96, 2011-2033.
ligands transfer on the internal face of the metal-alkene, the original
orientation of the hydrogen and phenyl substituents of the alkyl
group must match those of the alkene, and hence, rotation about
the C-C bond of 2 is necessary to form trans-stilbene (Scheme
1). The strongly enhanced signals at δ 4.92 and δ 3.13 are therefore
due to the original hydrogen atoms of p-H2 activated cis-stilbene
while the weakly enhanced signal at δ 2.92 arises because of a
species where hydride exchange places two protons from the same
p-H2 molecule onto the same carbon of the alkyl; these effects can
be reproduced by simulation, and similar exchange effects have
been seen in liberated alkenes produced during related hydrogena-
tion reactions.18 The failure to detect an nOe interaction from the
δ 4.94 signal to the hydride ligand suggests the phenyl is initially
on the internal face of the alkyl, with rotation to 2′ and subsequent
â-hydrogen transfer leading to alkene isomerization (Scheme 1).
When phenylpropyne was used as a substrate, Pd(bcope)-
(CHPhCH2Me)(H) 3, was observed with enhanced proton reso-
nances at δ 1.55, 1.86, and 4.72. The observation of 2 is therefore
(6) (a) Bowers, C. R.; Jones, D. H.; Kurur, N. D.; Labinger, J. A.; Pravica,
M. G.; Weitekamp, D. P. AdV. Magn. Res. 1990, 14, 269. (b) Natterer, J.;
Bargon, J. Prog. Nucl. Magn. Reson. Spectrosc. 1997, 31, 293-315. (c)
Duckett, S. B.; Sleigh, C. J. Prog. Nucl. Magn. Reson. Spectrosc. 1999,
34, 71-93. (d) Duckett, S. B.; Blazina, D. Eur. J. Inorg. Chem. 2003,
1046-1061. (e) Blazina, D.; Duckett, S. B.; Dunne, J. P.; Godard C. J.
Chem. Soc., Dalton Trans. 2004, 2601-2609.
(7) (a) Duckett, S. B.; Newell, C. L.; Eisenberg, R. J. Am. Chem. Soc. 1993,
115, 1156-1157. (b) Haake, M.; Natterer, J.; Bargon, J. J. Am. Chem.
Soc. 1996, 118, 8688-8691.
(8) (a) Barkemeyer, J.; Bargon, J.; Sengstschmid, H.; Freeman, R. J. Magn.
Reson., Ser. A 1996, 120, 129-132. (b) Sengstschmid, H.; Freeman, R.;
Barkemeyer, J.; Bargon, J. J. Magn. Reson., Ser. A 1996, 120, 249-257.
(9) (a) Duckett, S. B.; Barlow, G. K.; Partridge, M. G.; Messerle, B. A. J.
Chem. Soc., Dalton. Trans. 1995, 3427-3430. (b) Duckett, S. B.; Mawby,
R. J.; Partridge, M. G. J. Chem. Soc., Chem. Commun. 1996, 383-384.
(c) Jang, M.; Duckett S. B.; Eisenberg. R. Organometallics 1996, 15,
2863-2865. (d) Millar, S. P.; Jang, M.; Lachicotte, R. J.; Eisenberg, R.
Inorg. Chim. Acta 1998, 270, 363-375, (e) Messerle, B. A.; Sleigh, C.
J.; Partridge, M. G.; Duckett, S. B. J. Chem. Soc., Dalton Trans. 1999,
1429-1435.
(10) Carson, P. J.; Bowers, C. R.; Weitekamp, D. P. J. Am. Chem. Soc. 2001,
123, 11821-11822.
(11) Golman, K.; Axelsson, O.; Johannesson, H.; Mansson, S.; Olofsson, C.;
Petersson, J. S. Magn. Reson. Med. 2001, 46, 1-5.
1
not unique. While enhanced H NMR signals were now observed
(12) Permin, A. B.; Eisenberg, R. J. Am. Chem. Soc. 2002, 124, 12406-12407.
(13) Eberhard, M. R. Ph.D. Thesis, University of Bristol, Bristol, U.K., 2001.
(14) Aime, S.; Gobetto R.; Canet, D. J. Am. Chem. Soc. 1998, 120, 6770-
6773.
(15) When cis-stilbene is used as the substrate, 2 becomes visible after 1000
scans in the corresponding 31P{1H} spectrum, although the corresponding
1H resonances show no polarization.
for cis- and trans-â-methylstyrene, no direct magnetization transfer
into them from the aliphatic proton signals of 3 was observed, even
at 313 K. It can therefore be concluded that 3 is less prone to
â-hydride elimination than 2.
This study has demonstrated that PHIP need not be limited to
the study of metal dihydrides since the enhancement of organic
components within a metal’s ligand sphere can be achieved. To
observe the PHIP effect in this study, the reactions must be based
on (bcope)Pd(H)2 rather than (bcope)Pd(H)(solv)+, since the
necessary pairwise H2 transfer is not possible with the latter
complex.19 It has also been demonstrated that Pd(bcope)(alkene)-
(H)2 undergoes reversible hydride transfer to the bound alkene.
These deductions are summarized in Scheme 1 and correspond to
(16) (a) Colebrooke, S. A.; Duckett S. B.; Lohman. J. A. B. Chem. Commun.
2000, 685-686. (b) Blazina, D.; Duckett, S. B.; Dyson, P. J.; Johnson,
B. F. G.; Lohman. J. A. B.; Sleigh, C. J. J. Am. Chem. Soc. 2001, 123,
9760-9768.
(17) Jones, W. D.; Rosini, G. P.; Maguire, J. A. Organometallics 1999, 18,
1754-1760.
(18) Harthun, A.; Giernoth, R.; Elsevier, C. J.; Bargon, J. Chem. Commun.
1996, 2483-2484.
(19) When this reaction was run with a mixture of D2 and p-H2, very little HD
formation was observed.
JA044875F
9
J. AM. CHEM. SOC. VOL. 126, NO. 51, 2004 16709