Published on Web 01/13/2005
Rod Packings and Metal-Organic Frameworks Constructed
from Rod-Shaped Secondary Building Units
Nathaniel L. Rosi,† Jaheon Kim,†,§ Mohamed Eddaoudi,†,| Banglin Chen,†,
Michael O’Keeffe,*,‡ and Omar M. Yaghi*,†
Contribution from the Departments of Chemistry, UniVersity of Michigan,
Ann Arbor, Michigan 48109, and Arizona State UniVersity, Tempe, Arizona 85287
Received August 12, 2004; E-mail: mokeeffe@asu.edu; oyaghi@umich.edu
Abstract: The principal structure possibilities for packing infinite rod-shaped building blocks are described.
Some basic nets derived from linking simple rods (helices and ladders) are then enumerated. We
demonstrate the usefulness of the concept of rod secondary building units in the design and synthesis of
metal-organic frameworks (MOFs). Accordingly, we present the preparation, characterization, and crystal
structures of 14 new MOFs (named MOF-69A-C and MOF-70-80) of 12 different structure types, belonging
to rod packing motifs, and show how their structures are related to basic nets. The MOFs reported herein
are of polytopic carboxylates and contain one of Zn, Pb, Co, Cd, Mn, or Tb. The inclusion properties of the
most open members are presented as evidence that MOF structures with rod building blocks can indeed
be designed to have permanent porosity and rigid architectures.
Introduction
linked by benzene units to produce a primitive cubic net, b.
Simplification of MOF structures in this way has led us to fully
The design and synthesis of metal-organic frameworks
(MOFs) has yielded a large number of structures which have
been shown to have useful gas and liquid adsorption properties.1
In particular, porous structures constructed from discrete metal-
carboxylate clusters and organic links have been shown to be
amenable to systematic variation in pore size and functionality,
an aspect that has led to the synthesis of MOFs capable of
remarkable methane and hydrogen storage properties.1c-f The
permanent porosity of such MOFs is imparted by the structural
properties of the metal-carboxylate clusters, where each metal
ion is locked into position by the carboxylates to produce rigid
entities of simple geometry, referred to as secondary building
units (SBUs). In the interpretation and prediction of MOF
structures, the SBUs are considered as the “joints” and the
organic links as the “struts” of the underlying net. MOFs based
on discrete shapes (triangles, squares, tetrahedra, etc.) have been
synthesized and studied. An illustrative example is MOF-5
where the metal-carboxylate structure, a, is an octahedral SBU
enumerate and describe the principal topological possibilities
available for the assembly of various discrete SBU geometries.2
Indeed, the large majority of structural and sorption studies
have been done on MOFs of discrete SBUs, yet the analogous
chemistry involving infinite rod-shaped SBUs remains largely
unexplored. We recently found that rod-shaped metal-carboxy-
late SBUs provide means to accessing MOFs that do not
interpenetrate due to the intrinsic packing arrangement of such
(1) MOFs with porous properties: (a) Li, H.; Eddaoudi, M.; O’Keeffe, M.;
Yaghi, O. M. Nature 1999, 402, 276-279. (b) Chae, H. K.; Siberio-Perez,
D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A. J.; O’Keeffe, M.; Yaghi,
O. M. Nature 2004, 427, 523-527. (c) Eddaoudi, M.; Kim, J.; Rosi, N.;
Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O. M. Science 2002, 295,
469-472. (d) Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim,
J.; O’Keeffe, M.; Yaghi, O. M. Science 2003, 300, 1127-1129. (e) Rowsell,
J. L. C.; Millward, A. R.; Park, K. S.; Yaghi, O. M. J. Am. Chem. Soc.
2004, 126, 5666-5667. (f) Noro, S.; Kitagawa, S.; Kondo, M.; Seki, K.
Angew. Chem., Int. Ed. 2000, 39, 2081-2084. (g) Barea, E.; Navarro, J.
A. R.; Salas, J. M.; Masciocchi, N.; Galli, S.; Sironi, A. J. Am. Chem. Soc.
2004, 126, 3014-3015. (h) Serpaggi, S.; Luxbacher, T.; Cheetham, A. K.;
Ferey, G. J. Solid State Chem. 1999, 145, 580-586. Chiral MOFs: (i)
Cui, Y.; Evans, O. R.; Ngo, H. L.; White, P. S.; Lin, W. B. Angew. Chem.,
Int. Ed. 2002, 41, 1159-1162. (j) Seo, J. S.; Whang, D.; Lee, H.; Jun, S.
I.; Oh, J.; Jeon, Y. J.; Kim, K. Nature 2000, 404, 982-986. (k) Kepert, C.
J.; Prior, T. J.; Rosseinsky, M. J. J. Am. Chem. Soc. 2000, 122, 5158-
5168. Porphryin-containing MOFs: (l) Diskin-Posner, Y.; Dahal, S.;
Goldberg, I. Angew. Chem., Int. Ed. 2000, 39, 1288-1292. (m) Carlucci,
L.; Ciani, G.; Proserpio, D. M.; Porta, F. Angew. Chem., Int. Ed. 2003, 42,
317-322. (n) Kosal, M. E.; Chou, J. H.; Wilson, S. R.; Suslick, K. S. Nat.
Mater. 2002, 1, 118-121. Interpenetrated MOFs: (o) Evans, O. R.; Wang,
Z. Y.; Xiong, R. G.; Foxman, B. M.; Lin, W. B. Inorg. Chem. 1999, 38,
2969-2973. (p) Carlucci, L.; Ciani, G.; Macchi, P.; Proserpio, D. M. Chem.
Commun. 1998, 17, 1837-1838. (q) Klein, C.; Graf, E.; Hosseini, M. W.;
De Cian, A. New J. Chem. 2001, 209, 207-209. (r) Batten, S. R.; Robson,
R. Angew. Chem., Int. Ed. 1998, 37, 1461-1494. Other prominent examples
of MOFs: (s) Kiang, Y. H.; Gardner, G. B.; Lee, S.; Xu, Z.; Lobkovsky,
E. B. J. Am. Chem. Soc. 1999, 121, 8204-8215. (t) Braga, D.; Maini, L.;
Polito, M.; Mirolo, L.; Grepioni, F. Chem.-Eur. J. 2003, 9, 4362-4370.
(u) Zhao, H.; Heintz, R. A.; Ouyang, X.; Dunbar, K. R.; Campana, C. F.;
Rogers, R. D. Chem. Mater. 1999, 11, 736-746. (v) Cotton, F. A.; Lin,
C.; Murillo, C. A. Acc. Chem. Res. 2001, 34, 759-771. (w) Oh, M.;
Carpenter, G. B.; Sweigart, D. A. Acc. Chem. Res. 2004, 37, 1-11. (x)
Lu, J. J.; Mondal, A.; Moulton, B.; Zaworotko, M. J. Angew. Chem., Int.
Ed. 2001, 40, 2113-2116.
† University of Michigan.
‡ Arizona State University.
§ Present address: Department of Chemistry and CAMDRC, Soongsil
University, Seoul 156-743, Korea.
| Present address: Department of Chemistry, University of South Florida,
Tampa, FL 33620.
Present address: Department of Chemistry, University of Texas-Pan
American, Edinburg, TX 78541.
9
1504
J. AM. CHEM. SOC. 2005, 127, 1504-1518
10.1021/ja045123o CCC: $30.25 © 2005 American Chemical Society