LETTER
Aqueous Medium Radical Addition to Ketimines
2599
Table 3 Alkyl Radical Addition to 7–13 in Aqueous Media
Acknowledgment
This work was supported in part by The Japan Health Sciences
Foundation and Grant-in-Aid for Scientific Research (C) (Y.T.) and
for Young Scientists (B) (H.M.) from the Ministry of Education,
Culture, Sports, Science and Technology of Japan, and for Reseach
Grants, 21st Century COE Program ‘Knowledge Information Infra-
structure for Genome Science’.
Entry
1b
Imine
7
RI
Initiator
Et3B
Yield (%)a
89 (9:1)d
59 (>30:1)d
81
c-Hexyl-I
t-BuI
2b
7
Et3B
3c
7
c-Hexyl-I
t-BuI
Zn, CuI
Zn, CuI
Et3B
4c
7
90
References
5b
12
12
13
i-PrI
95 (>30:1)d
62 (>30:1)d
95 (>30:1)d
(1) For reviews, see: (a) In Radicals in Organic Synthesis, Vol.
1 and 2; Renaud, P.; Sibi, M. P., Eds.; Wiley-VCH: New
York, 2001. (b) Miyabe, H.; Naito, T. J. Synth. Org. Chem.
Jpn. 2001, 59, 35. (c) Friestad, G. K. Tetrahedron 2001, 57,
5461. (d) Miyabe, H.; Ueda, M.; Naito, T. Synlett 2004,
1140.
(2) (a) Hart, D. J.; Seely, F. L. J. Am. Chem. Soc. 1988, 110,
1633. (b) Bhat, B.; Swayze, E. E.; Wheeler, P.; Dimock, S.;
Perbost, M.; Sanghvi, Y. S. J. Org. Chem. 1996, 61, 8186.
(3) (a) Miyabe, H.; Ushiro, C.; Naito, T. Chem. Commun. 1997,
1789. (b) Miyabe, H.; Shibata, R.; Ushiro, C.; Naito, T.
Tetrahedron Lett. 1998, 39, 631. (c) Miyabe, H.; Fujii, K.;
Naito, T. Org. Lett. 1999, 1, 569. (d) Miyabe, H.; Ushiro,
C.; Ueda, M.; Yamakawa, K.; Naito, T. J. Org. Chem. 2000,
65, 176. (e) Ueda, M.; Miyabe, H.; Teramachi, M.; Miyata,
O.; Naito, T. Chem. Commun. 2003, 426.
(4) (a) Bertrand, M. P.; Feray, L.; Nouguier, R.; Stella, L. Synlett
1998, 780. (b) Bertrand, M. P.; Feray, L.; Nouguier, R.;
Perfetti, P. Synlett 1999, 1148. (c) Bertrand, M. P.; Feray,
L.; Nouguier, R.; Perfetti, P. J. Org. Chem. 1999, 64, 9189.
(5) (a) Friestad, G. K.; Qin, J. J. Am. Chem. Soc. 2000, 122,
8329. (b) Friestad, G. K.; Qin, J. J. Am. Chem. Soc. 2001,
123, 9922. (c) Friestad, G. K.; Shen, Y.; Ruggles, E. L.
Angew. Chem. Int. Ed. 2003, 42, 5061.
6b
t-BuI
Et3B
7b
t-BuI
Et3B
a Isolated yields.
b Reactions were carried out using RI (30 equiv) and Et3B in MeOH
(2.5 equiv) in H2O–MeOH for 5 min.
c Reactions were carried out using RI (7 equiv), Zn (7 equiv), CuI (1
equiv) in H2O–MeOH for 5 min.
d Ratios are for the desired alkylated product to ethylated product de-
termined by 1H NMR analysis.
The product 11d was converted to a,a-disubstituted
amino acid derivative 17 (Scheme 5). The reaction of 11d
with benzylamine in the presence of 2-pyridinol gave
amide, which was converted to methyl ether. The methyl
ether was treated with CAN to afford 17.
1) BnNH2, 2-Pyridinol, 98%
2) MeI, K2CO3, 98%
3) CAN, 67%
NH2
BnHN
Me
t-Bu
11d
O
(6) (a) Shono, T.; Kise, N.; Fujimoto, T. Tetrahedron Lett. 1991,
32, 525. (b) Torrente, S.; Alonso, R. Org. Lett. 2001, 3,
1985.
17
Scheme 5
(7) (a) Yamazaki, O.; Togo, H.; Nogami, G.; Yokoyama, M.
Bull. Chem. Soc. Jpn. 1997, 70, 2519. (b) Yorimitsu, H.;
Nakamura, T.; Shinokubo, H.; Oshima, K. J. Org. Chem.
1998, 63, 8604. (c) Nakamura, T.; Yorimitsu, H.;
Shinokubo, H.; Oshima, K. Synlett 1998, 1351. (d)Kita,Y.;
Nambu, H.; Ramesh, N. G.; Anikumar, G.; Matsugi, M. Org.
Lett. 2001, 3, 1157.
In conclusion, we have demonstrated the utility of imines
having 2-phenolic hydroxyl group in radical reactions.
These are the first examples of intermolecular reaction of
ketimines using Et3B or Zn as a conventional radical ini-
tiator.
(8) (a) Miyabe, H.; Ueda, M.; Naito, T. J. Org. Chem. 2000, 65,
5043. (b) Miyabe, H.; Fujii, K.; Goto, T.; Naito, T. Org. Lett.
2000, 2, 4071. (c) Miyabe, H.; Ueda, M.; Nishimura, A.;
Naito, T. Org. Lett. 2002, 4, 131. (d) Miyabe, H.;
Nishimura, A.; Ueda, M.; Naito, T. Chem. Commun. 2002,
1454. (e) Ueda, M.; Miyabe, H.; Nishimura, A.; Miyata, O.;
Takemoto, Y.; Naito, T. Org. Lett. 2003, 5, 3835. (f) Ueda,
M.; Miyabe, H.; Nishimura, A.; Sugino, H.; Naito, T.
Tetrahedron: Asymmetry 2003, 14, 2857.
(9) For a review, see: Miyabe, H.; Naito, T. Org. Biomol. Chem.
2004, 1267.
(10) Russell, G. A.; Wang, L.; Rajaratnam, R. J. Org. Chem.
1996, 61, 8988.
General Procedure for Radical Addition to Ketimines by Using
Et3B.
To a solution of ketimine 7, 12, or 13 (0.25 mmol) in H2O–MeOH
(1:4, v/v, 2.5 mL) were added RI (7.50 mmol) and Et3B (1.0 M in
MeOH, 0.63 mL, 0.63 mmol) at 20 °C. After being stirred at the
same temperature for 5 min, the reaction mixture was evaporated,
diluted with sat. NaHCO3 and then extracted with EtOAc. The or-
ganic phase was dried over MgSO4 and concentrated at reduced
pressure. Purification of the residue by preparative TLC (hexane–
EtOAc = 4:1, 2-fold development) afforded product.
(11) Miyabe, H.; Ueda, M.; Naito, T. Chem. Commun. 2000,
2059.
(12) Miyabe, H.; Ueda, M.; Yoshioka, N.; Naito, T. Synlett 1999,
465.
(13) Giese, B.; Damm, W.; Roth, M.; Zehnder, M. Synlett 1992,
441.
Representative Characterization Data of Product 11a.
Colorless oil; IR (CHCl3): 1762 cm–1. 1H NMR (CDCl3): d = 6.72
(1 H, br t, J = 8.3 Hz), 6.62 (1 H, br d, J = 8.3 Hz), 6.60 (1 H, br d,
J = 8.3 Hz), 3.86 (1 H, br s), 1.83 (1 H, m), 1.68 (1 H, m), 1.47 (3
H, s), 0.97 (3 H, t, J = 7.6 Hz). 13C NMR (CDCl3): d = 170.1, 144.5,
141.9, 120.4, 119.4, 111.3, 108.4, 57.7, 29.7, 22.7, 7.4. MS (EI+):
m/z (%) = 207 (40) [M+], 150 (100). HRMS (EI+): m/z calcd for
C11H13NO3 [M+]: 207.0895. Found: 207.0892.
Synlett 2004, No. 14, 2597–2599 © Thieme Stuttgart · New York