4060 J. Am. Chem. Soc., Vol. 119, No. 17, 1997
Lee et al.
standing, with both CPO7 and model systems.6 A similar
reversibility for the P450 inactivation reaction has been predicted,6c
but has not been reported.
In all alkene-modified heme systems studied to date, N-(2-
hydroxyalkyl)porphyrins (1) containing the alkene skeleton (or
their oxidized derivatives)5c,e can be isolated from the epoxi-
dation reaction following acid demetalation of the hemin. At
least five distinct heme adducts might give rise to this
chemistry: three metallocycles (2-4) with differing Fe,N bridge
lengths;6,8 a â-hydroxycarbene (5);9 and a σ-alkylhemin (6).10
enzymatic13 heme systems that organometallic heme species
including porphyrin iron carbenes and σ-alkyliron porphyrins
(and their σ-aryl or σ-vinyl analogs) (i) may be generated under
catalytic conditions and (ii) undergo a reversible, redox-induced
metal-to-nitrogen ligand migration to yield N-substituted por-
phyrin products. Ligand migration of this kind has been
proposed to be responsible for the isolation of N-substituted
porphyrins from heme enzyme systems following inactivation
with xenobiotics including alkyl (or aryl) hydrazines,13 syd-
nones,14 collidine derivatives,15 and griseofulvin.16
On the basis of results with model hemins, the recent
consensus is that the products of alkene-mediated inactivation
in both model and enzymatic systems are N-alkylhemin met-
allocycles of type 2.4-6 For the model systems, this structural
assignment appears well founded. NMR studies of an intact
alkene-modified tetraarylhemin6b have shown shifts in one set
of â-pyrrole proton resonances, consistent with covalent modi-
1
fication of a single pyrrole ring and with H shifts seen in
synthetic N-alkylhemins.17 While an observed shift in NMR
resonances for one set of pyrrole protons does not discriminate
between structures 2-4, reconstitution of N-(2-hydroxyalkyl)-
porphyrins with Fe(III) and appropriate ligands gives hemins
with electronic spectra similar to those of the primary products
of alkene-mediated inactivation,6a,b and the EPR and optical
spectra of these hemins are consistent with axial alkoxide
ligation, as opposed to σ-alkyl ligation.
To date, no comparable structural studies have been carried
out on the intact enzymatic heme adducts. For P450, in situ
studies of the modified hemin have been hampered by the
difficulty of obtaining sufficiently clean preparations of inac-
tivated enzyme, although detailed NMR studies have been
conducted on demetalated porphyrins isolated from P450. N-(2-
Hydroxyalkyl)protoporphyrin IX derivatives isolated from alk-
ene-inactivated P450 reveal a marked regioselectivity and
stereoselectivity of pyrrole N-alkylation, suggesting that the
pyrrole alkylation occurs within the enzyme active site.4a,b
However, enzyme reconstitution with an alkene-modified hemin
In each case, two orientations of addition are possible for a
monosubstituted alkene (R or R′ ) H), for a total of ten different
possible structures. The N-(2-hydroxyalkyl)porphyrins isolated
from alkene-inactivated enzymatic or model systems after acid
treatment are simple demetalation products of 2. However, the
same demetalated porphyrins might also arise by rearrangement
of the organometallic species 3-6 under the conditions of
workup.11 It is known from a variety of model8,10-12 and
(4) (a) Kunze, K. L.; Mangold, B. L. K.; Wheeler, C.; Beilan, H. S.;
Ortiz de Montellano, P. R. J. Biol. Chem. 1983, 258, 4202-4207. (b) Ortiz
de Montellano, P. R.; Mangold, B. L. K.; Wheeler, C.; Kunze, K. L.; Reich,
N. O. J. Biol. Chem. 1983, 258, 4208-4213. (c) Ortiz de Montellano, P.
R.; Correia, M. A. In Cytochrome P450: Structure, Mechanism, and
Biochemistry, 2nd ed.; Ortiz de Montellano, P. R., Ed.; Plenum Press: New
York, 1995; pp 305-364. (d) Shirane, N.; Sui, Z.; Peterson, J. A.; Ortiz
de Montellano, P. R. Biochemistry 1993, 32, 13732-13741.
(5) (a) Mansuy, D.; Devocelle, L.; Artaud, I.; Battioni, J.-P. NouV. J.
Chem. 1985, 9, 711-716. (b) Collman, J. P.; Hampton, P. D.; Brauman,
J. I. J. Am. Chem. Soc. 1986, 108, 7861-7862. (c) Artaud, I.; Devocelle,
L.; Battioni, J.-P.; Girault, J.-P.; Mansuy, D. J. Am. Chem. Soc. 1987, 109,
3782-3783. (d) Artaud, I.; Gre´goire, N.; Mansuy, D. New J. Chem. 1989,
13, 581-586. (e) Nakano, T.; Traylor, T. G.; Dolphin, D. Can. J. Chem.
1990, 68, 1504-1506. (f) Collman, J. P.; Hampton, P. D.; Brauman, J. I.
J. Am. Chem. Soc. 1990, 112, 2977-2986. (g) Collman, J. P.; Hampton,
P. D.; Brauman, J. I. J. Am. Chem. Soc. 1990, 112, 2986-2998.
(6) (a) Mashiko, T.; Dolphin, D.; Nakano, T.; Traylor, T. G. J. Am. Chem.
Soc. 1985, 107, 3735-3736. (b) Traylor, T. G.; Nakano, T.; Miksztal, A.
R.; Dunlap, B. E. J. Am. Chem. Soc. 1987, 109, 3625-3632. (c) Tian,
Z.-Q.; Richards, J. L.; Traylor, T. G. J. Am. Chem. Soc. 1995, 117, 21-29.
(7) Dexter, A. F.; Hager, L. P. J. Am. Chem. Soc. 1995, 117, 817-818.
(8) (a) Chevrier, B.; Weiss, R.; Lange, M.; Chottard, J.-C.; Mansuy, D.
J. Am. Chem. Soc. 1981, 103, 2899-2901. (b) Latos-Grazynski, L.; Cheng,
R.-J.; La Mar, G. N.; Balch, A. L. J. Am. Chem. Soc. 1981, 103, 4270-
4272. (c) Mansuy, D.; Morgenstern-Badarau, I.; Lange, M.; Gans, P. Inorg.
Chem. 1982, 21, 1427-1430. (d) Olmstead, M. M.; Cheng, R.-J.; Balch,
A. L. Inorg. Chem. 1982, 21, 4143-4148. (e) Balch, A. L.; Cheng, R.-J.;
La Mar, G. N.; Latos-Grazynski, L. Inorg. Chem. 1985, 24, 2651-2656.
(9) (a) Groves, J. T.; Avaria-Neisser, G. D.; Fish, K. M.; Imachi, M.;
Kuczkowski, R. L. J. Am. Chem. Soc. 1986, 108, 3837-3838. (b) Dolphin,
D.; Matsumoto, A.; Shortman, C. J. Am. Chem. Soc. 1989, 111, 411-413.
(10) (a) Lexa, D.; Save´ant, J.-M.; Battioni, J.-P.; Lange, M.; Mansuy,
D. Angew. Chem., Int. Ed. Engl. 1981, 20, 578-579. (b) Battioni, P.; Mahy,
J. P.; Gillet, G.; Mansuy, D. J. Am. Chem. Soc. 1983, 105, 1399-1401. (c)
Tabard, A.; Cociolos, P.; Lagrange, G.; Gerardin, R.; Hubsch, J.; Lecomte,
C.; Zarembowitch, J.; Guilard, R. Inor´g. Chem. 1988, 27, 110-117. (d)
Guilard, R.; Kadish, K. M. Chem. ReV. 1988, 88, 1121-1146.
(11) (a) Lange, M.; Mansuy, D. Tetrahedron Lett. 1981, 22, 2561-2564.
(b) Ortiz de Montellano, P. R.; Kunze, K. L.; Augusto, O. J. Am. Chem.
Soc. 1982, 104, 3545-3546. (c) Lanc¸on, D.; Cociolos, P.; Guilard, R.;
Kadish, K. M. J. Am. Chem. Soc. 1984, 106, 4472-4478. (d) Balch, A.
L.; Renner, M. W. J. Am. Chem. Soc. 1986, 108, 2603-2608. (e) Mansuy,
D.; Battioni, P.; Battioni, J.-P. Eur. J. Biochem. 1989, 184, 267-285.
(12) (a) Callot, H. J.; Schaeffer, E. Tetrahedron Lett. 1980, 21, 1335-
1338. (b) Mansuy, D.; Battioni, J.-P.; Dupre´, D.; Sartori, E.; Chottard, G.
J. Am. Chem. Soc. 1982, 104, 6159-6161. (c) Mansuy, D. Pure Appl.
Chem. 1987, 59, 759-770. (d) Artaud, I.; Gregoire, N.; Battioni, J.-P.;
Dupre, D.; Mansuy, D. J. Am. Chem. Soc. 1988, 110, 8714-8716.
(13) (a) Jonen, H. G.; Werringloer, J.; Prough, R. S.; Estabrook, R. W.
J. Biol. Chem. 1982, 257, 4404-4421. (b) Battioni, P.; Mahy, J.-P.;
Delaforge, M.; Mansuy, D. Eur. J. Biochem. 1983, 134, 241-248. (c)
Ringe, D.; Petsko, G. A.; Kerr, D. E.; Ortiz de Montellano, P. R.
Biochemistry 1984, 23, 2-4. (d) Raag, R.; Swanson, B. A.; Poulos, T. L.;
Ortiz de Montellano, P. R. Biochemistry 1990, 29, 8119-8126. (e)
Samokyszyn, V. M.; Ortiz de Montellano, P. R. Biochemistry 1991, 30,
11646-11653. (f) Mahy, J. P.; Gaspard, S.; Mansuy, D. Biochemistry 1993,
32, 4014-4021. (g) Gerber, N. C.; Ortiz de Montellano, P. R. J. Biol.
Chem. 1995, 270, 17791-17796.
(14) (a) Grab, L. A.; Swanson, B. A.; Ortiz de Montellano, P. R.
Biochemistry 1988, 27, 4805-4814. (b) Ortiz de Montellano, P. R.; Grab,
L. A. J. Am. Chem. Soc. 1986, 108, 5584-5589.
(15) (a) Ortiz de Montellano, P. R.; Beilan, H. S.; Kunze, K. L. J. Biol.
Chem. 1981, 256, 6708-6713. (b) Ortiz de Montellano, P. R.; Beilan, H.
S.; Kunze, K. L. Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 1490-1494.
(16) (a) De Matteis, F.; Gibbs, A. H.; Martini, S. R.; Milek, R. L. B.
Biochem. J. 1991, 280, 813-816. (b) Holley, A. E.; Frater, Y.; Gibbs, A.
H.; De Matteis, F.; Lamb, J. H.; Farmer, P. B.; Naylor, S. Biochem. J.
1991, 274, 843-848.
(17) (a) Balch, A. L.; Chan, Y.-W.; La Mar, G. N.; Latos-Grazynski,
L.; Renner, M. W. Inorg. Chem. 1985, 24, 1437-1443. (b) Balch, A. L.;
La Mar, G. N.; Latos-Grazynski, L.; Renner, M. W. Inorg. Chem. 1985,
24, 2432-2436. (c) Balch, A. L.; Cornman, C. R.; Latos-Grazynski, L.;
Olmstead, M. M. J. Am. Chem. Soc. 1990, 112, 7552-7558.