1412
V. V. Sureshbabu et al. / Tetrahedron Letters 49 (2008) 1408–1412
(MALDI-TOF) m/z observed: 570.0 [M+Na]+, 586.2
[M+K]+. Anal. Calcd for C29H29N3O8: C, 63.61; H, 5.34;
N, 7.67. Found: C, 63.52; H, 5.22; N, 7.56.
14. Guerlavais, V.; Boegglin, D.; Mousseaux, D.; Oiry, C.; Heitz, A.;
Deghengi, R.; Locatelli, V.; Torsello, A.; Ghe, C.; Catapano, F.;
Muccioli, G.; Galleyrand, J.-C.; Fehrentz, J.-A.; Martinez, J. J. Med.
Chem. 2003, 46, 1191–1203.
15. Teng, H.; He, Y.; Wu, L.; Su, J.; Feng, X.; Qiu, G.; Liang, S.; Hu, X.
Synlett 2006, 877–880.
5.6. Compound 9
16. Semetey, V.; Didierjean, C.; Briand, J.-P.; Aubry, A.; Guichard, G.
Angew. Chem., Int. Ed. 2002, 41, 1895–1898.
17. Fischer, L.; Semetey, V.; Lozano, J.-M.; Schaffner, A. P.; Briand,
J.-P.; Didierjean, C.; Guichard, G. Eur. J. Org. Chem. 2007, 15, 2511–
2525.
18. Patil, B. S.; Vasanthakumar, G. R.; Sureshbabu, V. V. J. Org. Chem.
2003, 68, 7274–7280.
19. Sureshbabu, V. V.; Patil, B. S.; Venkatramanarao, R. J. Org. Chem.
2006, 71, 7697–7705.
1H NMR (400 MHz, DMSO-d6) d 0.75–0.95 (m, 24H),
1.39 (s, 9H), 1.52 (m, 6H), 1.62 (m, 2H), 1.69–1.85 (m,
12H), 1.97 (m, 1H), 2.28 (m, 2H), 2.98 (m, 2H), 3.15–
3.21 (m, 3H), 3.85–3.97 (m, 2H), 4.03–4.15 (m, 3H), 4.59
(m, 1H), 6.87–6.96 (m, 2H), 7.01–7.22 (m, 3H), 7.59–7.85
(m, 3H), 8.15 (s, 1H), 8.21 (s, 1H). MALDI-TOF MS:
m/z observed 906.5 [M+Na], 922.5 [M+K]. HRMS: found,
906.5653 [M+Na]; calcd, 906.5640 [M+Na].
20. Patil, B. S.; Sureshbabu, V. V. Lett. Pept. Sci. 2003, 10, 93–97.
21. Sureshbabu, V. V.; Ananda, K.; Vasanthakumar, G. R. J. Chem.
Soc., Perkin Trans. 1 2000, 4328–4331.
22. Myers, A. C.; Kowalski, J. A.; Lipton, M. A. Bioorg. Med. Chem.
Lett. 2004, 14, 5219–5222.
Acknowledgments
23. Englund, E. A.; Gopi, H. N.; Appella, D. H. Org. Lett. 2004, 6, 213–
215.
24. Smith, P. A. S. Org. React. 1946, 3, 337–449.
25. Jacobi, P. A.; Zheng, W. Tetrahedron Lett. 1993, 34, 2581–2584.
26. Shao, H.; Colucci, M.; Tong, S.; Zhang, H.; Castelhano, A. L.
Tetrahedron Lett. 1998, 39, 7235–7238.
We thank the Department of Science and Technology,
New Delhi, for financial assistance. We also thank Pro-
fessor Fred Naider, CUNY, New York, for useful
discussions.
27. Wu, Y.; Esser, L.; De Brabander, J. K. Angew. Chem., Int. Ed. 2000,
39, 4308–4310.
References and notes
28. Kedrowski, B. L. J. Org. Chem. 2003, 68, 5403–5406.
29. Yamada, S.; Ikota, N.; Shioiri, T.; Tachibana, S. J. Am. Chem. Soc.
1975, 97, 7174–7175.
1. Nowick, J. S.; Smith, E. M.; Pairish, M. Chem. Soc. Rev. 1996, 25,
401–415.
2. Lam, P. Y.; Jadhav, P. K.; Eyermann, C. J.; Hodge, C. N.; Ru, Y.;
Bacheler, L. T.; Meek, J. L.; Otto, M. J.; Rayner, M. M.; Wong, Y.
N.; Chang, C.-H.; Weber, P. C.; Jackson, D. A.; Sharpe, T. R.;
Erickson-Viitanen, S. Science 1994, 263, 380–384.
3. Burgess, K.; Shin, H.; Linthicum, D. S. Angew. Chem., Int. Ed. Engl.
1995, 34, 907–909.
30. Ninomiya, K.; Shioiri, T.; Yamada, S. Tetrahedron 1974, 30, 2151–
2157.
31. Lal, B.; Pramanik, B. N.; Manhas, M. S.; Bose, A. K. Tetrahedron
Lett. 1977, 18, 1977–1980.
32. Richter, L. S.; Andersen, S. Tetrahedron Lett. 1998, 39, 8747–8750.
33. Daisuke, S. D.; Sasayama, S.; Takahashi, H.; Ikegami, S. Tetrahedron
Lett. 2006, 47, 7219–7223.
4. Wang, X.; Huq, I.; Rana, T. M. J. Am. Chem. Soc. 1997, 119, 6444–
6445.
34. Houben-Weyl: Synthesis of Peptides & Peptidomimetics; Goodman,
M., Felix, A., Moroder, L., Toniolo, C., Eds.; Georg Thieme:
Stuttgart, New York, 2003; Vol. E22c; and references cited therein.
35. Scriven, E. F. V.; Turnbull, K. Chem. Rev. 1988, 88, 297–368.
36. The racemization study was carried out through 1H NMR analysis of
the ureas prepared by coupling Fmoc-Ser(Bn)OH with optically pure
R or S-1-phenylethylamine and its racemate. The methyl resonances
of the phenylethylamine residue in Fmoc-Ser(Bn)-w(NH–CO–NH)-R-
(+)-1-phenylethylamine and Fmoc-Ser(Bn)-w(NH–CO–NH)-S-(ꢀ)-1-
phenylethylamine were observed as distinct doublets at d 1.30, 1.32
and d 1.29, 1.31, respectively, with separation of 0.02 ppm in DMSO-
d6 solution. For Fmoc-Ser(Bn)-w(NH–CO–NH)-R,S-( )-1-phenyl-
ethylamine, the corresponding methyl resonances were observed as
two doublets at d 1.32, 1.30 and d 1.31, 1.29. This clearly showed that
there was no formation of an epimeric mixture (absence of two –CH3
doublets when optically pure phenylethylamines were coupled) during
the reaction. Instead, the reaction resulted in optically pure product.
37. Karle, I. L.; Pramanik, A.; Banerjee, A.; Bhattacharjya, S.; Balaram,
P. J. Am. Chem. Soc. 1997, 119, 9087–9095.
5. Cho, C. Y.; Moran, E. J.; Cherry, S. R.; Stephans, J. C.; Fodor, S. P.;
Adams, C. L.; Sundaram, A.; Jacobs, J. W.; Schultz, P. G. Science
1993, 261, 1303–1305.
6. Navia, M. A.; Fitzgerald, P. M. D.; McKeever, B. M.; Leu, C.-T.;
Heimbach, J. C.; Herber, W. K.; Sigal, I. S.; Darke, P. L.; Springer,
J. P. Nature 1989, 337, 615–620.
7. Bakshi, P.; Wolfe, M. S. J. Med. Chem. 2004, 47, 6485–6489.
8. Kick, E. K.; Ellman, J. A. J. Med. Chem. 1995, 38, 1427–1430.
9. Broadbridge, R. J.; Sharma, R. P.; Akhtar, M. Chem. Commun. 1998,
1449–1450.
10. Dales, N. A.; Bohacek, R. S.; Satyshur, K. A.; Rich, D. H. Org. Lett.
2001, 3, 2313–2316.
11. Kawasaki, K.; Maeda, M.; Watanabe, J.; Kaneto, H. Chem. Pharm.
Bull. 1988, 36, 1766–1771.
12. Vegner, R. E.; Chipens, G. I. J. Gen. Chem. USSR (Engl. Transl.)
1975, 45, 431–434.
13. Rodriguez, M.; Dubreuil, P.; Bali, J. P.; Martinez, J. J. Med. Chem.
1987, 30, 758–763.