Organic Letters
Letter
Higuchi, T.; Murakata, M.; Kobayashi, T.; Morikawa, K.; Shimma, N.;
Suzuki, M.; Hagita, H.; Ozawa, K.; Yamaguchi, K.; Kato, M.; Ikeda, S.
Bioorg. Med. Chem. 2011, 19, 5334−5341. (d) Mondal, S.; Panda, G.
RSC Adv. 2014, 4, 28317−28358.
(7) (a) Endo, K.; Ishioka, T.; Ohkubo, T.; Shibata, T. J. Org. Chem.
2012, 77, 7223−7231. (b) Roscales, S.; Csaky, A. G. Chem. Soc. Rev.
2014, 43, 8215−8225. (c) Nambo, M.; Crudden, C. M. ACS Catal.
2015, 5, 4734−4742. (d) Lima, F.; Kabeshov, M. A.; Tran, D. N.;
Battilocchio, C.; Sedelmeier, J.; Sedelmeier, G.; Schenkel, B.; Ley, S. V.
Angew. Chem., Int. Ed. 2016, 55, 14085−14089. (e) He, Z.; Song, F.;
Sun, H.; Huang, Y. J. Am. Chem. Soc. 2018, 140, 2693.
methanes, using benzylic alcohols. A comprehensive scope was
demonstrated, covering electron-deficient coupling partners up
to complex products, including natural products and drugs. The
synthesis of the target ortho- or para-isomers can be achieved by
performing transformation in intramolecular or intermolecular
fashion. The application of nitrosonium salts as efficient,
inexpensive, and general catalysts represents an unprecedented
and advanced entry into metal-free Friedel−Crafts chemistry.
ASSOCIATED CONTENT
* Supporting Information
■
(8) Tarbell, D. S.; Petropoulos, J. C. J. Am. Chem. Soc. 1952, 74, 244−
248.
S
The Supporting Information is available free of charge on the
(9) (a) Bhure, M. H.; Rode, C. V.; Chikate, R. C.; Patwardhan, N.;
Patil, S. Catal. Commun. 2007, 8, 139−144. (b) Zhou, L.; Wang, W.;
Zuo, L.; Yao, S.; Wang, W.; Duan, W. Tetrahedron Lett. 2008, 49, 4876−
4878. (c) Luzzio, F. A.; Chen, J. J. Org. Chem. 2009, 74, 5629−5632.
(d) Sagrera, G.; Seoane, G. Synthesis 2009, 24, 4190−4202. (e) Kraus,
G. A.; Chaudhary, D. Tetrahedron Lett. 2012, 53, 7072−7074.
(f) Veenboer, R. M. P.; Nolan, S. P. Green Chem. 2015, 17, 3819−3825.
(10) (a) Friedel, C.; Crafts, J. M. J. Chem. Soc. 1877, 32, 725−791.
(b) Mertins, K.; Iovel, I.; Kischel, J.; Zapf, A.; Beller, M. Angew. Chem.,
Int. Ed. 2005, 44, 238−242. (c) Rueping, M.; Nachtsheim, B. J. Beilstein
J. Org. Chem. 2010, 6, 6−29.
General experimental procedures, detailed optimization
studies, details on control experiments, mechanistic
studies, and biological methods and characterization of
starting materials and products (PDF)
AUTHOR INFORMATION
Corresponding Author
■
ORCID
̈
(11) Schafer, G.; Bode, J. W. Angew. Chem., Int. Ed. 2011, 50, 10913−
10916.
(12) Pallikonda, G.; Chakravarty, M. J. Org. Chem. 2016, 81, 2135−
2142.
(13) Champagne, P. A.; Benhassine, Y.; Desroches, J.; Paquin, J.-F.
Angew. Chem., Int. Ed. 2014, 53, 13835−13839.
Notes
The authors declare no competing financial interest.
́
(14) Zhu, J.; Perez, M.; Stephan, D. W. Angew. Chem., Int. Ed. 2016,
55, 8448−8451.
ACKNOWLEDGMENTS
■
(15) Desroches, J.; Champagne, P. A.; Benhassine, Y.; Paquin, J.-F.
Org. Biomol. Chem. 2015, 13, 2243−2246.
A.P.A. acknowledges the support of DFG (Heisenberg Scholar-
ship No. AN 1064/4-1) and the Boehringer Ingelheim
Foundation (Plus 3). L.B. is supported by the Verband der
Chemischen Industrie e.V.
(16) (a) Ricardo, C. L.; Mo, X.; McCubbin, J. A.; Hall, D. G. Chem. -
Eur. J. 2015, 21, 4218−4223. (b) Mo, X.; Yakiwchuk, J.; Dansereau, J.;
McCubbin, J. A.; Hall, D. G. J. Am. Chem. Soc. 2015, 137, 9694−9703.
́
(17) Vukovic, V. D.; Richmond, E.; Wolf, E.; Moran, J. Angew. Chem.,
Int. Ed. 2017, 56, 3085−3089.
REFERENCES
■
(18) (a) Panek, J. S.; Beresis, R. T. J. Am. Chem. Soc. 1993, 115, 7898−
7899. (b) Olah, G. A.; Ramaiah, P. J. Org. Chem. 1993, 58, 4639−4641.
(c) Wu, G. L.; Wu, L. M. Chin. Chem. Lett. 2008, 19, 55−58.
(d) Khenkin, A. M.; Neumann, R. J. Am. Chem. Soc. 2008, 130, 11876−
11877. (e) Su, B.; Li, L.; Hu, Y.; Liu, Y.; Wang, Q. Adv. Synth. Catal.
2012, 354, 383−387. (f) Morse, P. D.; Jamison, T. F. Angew. Chem., Int.
Ed. 2017, 56, 13999−14002. (g) Bering, L.; Paulussen, F. M.;
Antonchick, A. P. Org. Lett. 2018, 20, 1978−1981. (h) Borodkin, G.
I.; Shubin, V. G. Russ. Chem. Rev. 2017, 86, 18−46.
(19) Olah, G. A.; Sury Prakash, G. K.; Wang, Q.; Li, X.-y. Nitrosonium
Tetrafluoroborate. In Encyclopedia of Reagents for Organic Synthesis;
John Wiley & Sons: Hoboken, NJ, 2001.
(20) (a) Patel, R. P.; McAndrew, J.; Sellak, H.; White, C. R.; Jo, H.;
Freeman, B. A.; Darley-Usmar, V. M. Biochim. Biophys. Acta, Bioenerg.
1999, 1411, 385−400. (b) Weidinger, A.; Kozlov, A. Biomolecules 2015,
5, 472.
(21) (a) Ho, T.-L.; Olah, G. A. J. Org. Chem. 1977, 42, 3097−3098.
(b) Bach, R. D.; Holubka, J. W.; Taaffee, T. A. J. Org. Chem. 1979, 44,
1739−1740. (c) Wang, J.; Wu, W.; Xu, Y.; Wu, L. Chin. Sci. Bull. 2010,
55, 2803−2806.
(22) (a) Bering, L.; Antonchick, A. P. Org. Lett. 2015, 17, 3134−3137.
(b) Bering, L.; Antonchick, A. P. Chem. Sci. 2017, 8, 452−457.
(c) Bering, L.; Manna, S.; Antonchick, A. P. Chem. - Eur. J. 2017, 23,
10936−10946.
(23) (a) Bencze, W. L.; Kisis, B.; Puckett, R. T.; Finch, N. Tetrahedron
1970, 26, 5407−5414. (b) Bencze, W. L. (Ciba-Geigy Corporation).
U.S. Patent No. 3708589A, 1973.
(1) Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.;
Leazer, J. L., Jr.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman, B.
A.; Wells, A.; Zaks, A.; Zhang, T. Y. Green Chem. 2007, 9, 411−420.
(2) (a) Bandini, M.; Tragni, M. Org. Biomol. Chem. 2009, 7, 1501−
1507. (b) Dobereiner, G. E.; Crabtree, R. H. Chem. Rev. 2010, 110,
681−703. (c) Suzuki, T. Chem. Rev. 2011, 111, 1825−1845.
(d) Kumar, R.; Van der Eycken, E. V. Chem. Soc. Rev. 2013, 42,
1121−1146.
(3) (a) Li, B.-J.; Shi, Z.-J.; Shi, Z.-J. Homogeneous Transition-Metal-
Catalyzed C−H Bond Functionalization. In Homogeneous Catalysis for
Unreactive Bond Activation; John Wiley & Sons: Hoboken, NJ, 2014.
(b) Shugrue, C. R.; Miller, S. J. Chem. Rev. 2017, 117, 11894−11951.
(c) Brill, Z. G.; Condakes, M. L.; Ting, C. P.; Maimone, T. J. Chem. Rev.
2017, 117, 11753−11795.
(4) (a) Han, F.-S. Chem. Soc. Rev. 2013, 42, 5270−5298. (b) Cornella,
J.; Zarate, C.; Martin, R. Chem. Soc. Rev. 2014, 43, 8081−8097.
(c) Tobisu, M.; Chatani, N. Acc. Chem. Res. 2015, 48, 1717−1726.
(d) Dryzhakov, M.; Richmond, E.; Moran, J. Synthesis 2016, 48, 935−
959.
(5) (a) Trost, B. Science 1991, 254, 1471−1477. (b) Watson, A. J. A.;
Williams, J. M. J. Science 2010, 329, 635−636. (c) Bisz, E.; Szostak, M.
ChemSusChem 2017, 10, 3964−3981. (d) Wu, X.-F. Solvents as Reagents
in Organic Synthesis: Reactions and Applications. Wiley−VCH:
Weinheim, Germany, 2017.
(6) (a) Panda, G.; Parai, M. K.; Das, S. K.; Shagufta; Sinha, M.;
Chaturvedi, V.; Srivastava, A. K.; Manju, Y. S.; Gaikwad, A. N.; Sinha, S.
Eur. J. Med. Chem. 2007, 42, 410−419. (b) De Silva, A.; Lee, J.-K.;
́
Andre, X.; Felix, N. M.; Cao, H. B.; Deng, H.; Ober, C. K. Chem. Mater.
2008, 20, 1606−1613. (c) Ohtake, Y.; Sato, T.; Matsuoka, H.;
Nishimoto, M.; Taka, N.; Takano, K.; Yamamoto, K.; Ohmori, M.;
D
Org. Lett. XXXX, XXX, XXX−XXX