A R T I C L E S
Liu et al.
particle films,15 surface stress changes resulting from DNA
hybridization,16 and the electromechanical expansion of carbon
nanotubes,17 have been successful in transferring molecular
phenomena into macroscopic-scale motion. These systems,
however, rely primarily upon the response of a bulk material,
rather than upon individual molecular behavior. Recent advances
in the molecular arena include a crown-annelated oligoth-
iophene,18 a thiophene-fused [8] annulene,19 a unidirectional
three-station [2]catenane,20 a series of unidirectional chiroptical
rotary switches,21 ion-triggered contraction/extension molecular
motions22 and an array of rotaxane-based molecular switches
and shuttles.9,23 Pioneering work in the development of linear
molecular muscles6,11g,24 has been investigated, based on com-
pounds prepared using transition metal-based templates for the
formation of two-component interlocked molecules in which
the design is bioinspired to display contraction and extension
movements. These molecular systems have been shown to
undergo actuation, albeit in an incoherent manner in a solution
environment, heralding their potential utilization6 in mechanical
applications including nano- and microrobots for medicine and
everyday-life pursuits. Although not insurmountable, the har-
nessing of molecular motion in a cooperative and coherent
manner within an ordered mechanical setting is proving to be
much more challenging. The alignment of liquid crystals has
been effected25 over large distances by controllable chiroptical
switches to achieve a range of colors. Although the bending of
an AFM beam by photoisomerization of a polymer strand
containing a single pendant azobenzene has been demonstrated26
successfully in a single-molecule optomechanical device, the
actual deflection falls short of its theoretical maximum as a result
of incomplete isomerization by the polymer. Thus, to our way
of thinking, no single molecular system yet meets all of the
stringent demands of processability, cooperativity, addressability,
and efficiency required of NEMS.
(9) For examples of chemically controllable molecular machines, see (a) Lane,
A. S.; Leigh, D. A.; Murphy, A. J. Am. Chem. Soc. 1997, 119, 11092-
11093. (b) Ashton, P. R.; Ballardini, R.; Balzani, V.; Baxter, I.; Credi, A.;
Fyfe, M. C. T.; Gandolfi, M. T.; Go´mez-Lo´pez, M.; Mart´ınez-D´ıaz, M.-
V.; Piersanti, A.; Spencer, N.; Stoddart, J. F.; Venturi, M.; White, A. J. P.;
Williams, D. J. J. Am. Chem. Soc. 1998, 120, 11932-11942. (c) Lee, J.
W.; Kim, K.; Kim, K. Chem. Commun. 2001, 1042-1043. (d) Elizarov,
A. M.; Chiu, H.-S.; Stoddart, J. F. J. Org. Chem. 2002, 67, 9175-9181.
(e) Badjic, J. D.; Balzani, V.; Credi, A.; Silvi, S.; Stoddart, J. F. Science
2004, 303, 1845-1849. (f) Kaiser, G.; Jarrosson, T.; Otto, S.; Ng, Y.-F.;
Bond, A. D.; Sanders, J. K. M Angew. Chem., Int. Ed. 2004, 43, 1959-
1962. (g) Liu, Y.; Flood, A. H.; Stoddart, J. F. J. Am. Chem. Soc. 2004,
126, 9150-9151. For examples of electrochemically controllable molecular
machines, see (h) Raehm, L.; Kern, J.-M.; Sauvage, J.-P. Chem. Eur. J.
1999, 5, 3310-3317. (i) Bermudez, V.; Capron, N.; Gase, T.; Gatti, F. G.;
Kajzar, F.; Leigh, D. A.; Zerbetto, F.; Zhang, S. Nature 2000, 406, 608-
611. (j) Kern, J.-M.; Raehm, L.; Sauvage, J.-P.; Divisia-Blohorn, B.; Vidal,
P.-L. Inorg. Chem. 2000, 39, 1555-1560. (k) Ballardini, R.; Balzani, V.;
Dehaen, W.; Dell’Erba, A. E.; Raymo, F. M.; Stoddart, J. F.; Venturi, M.
Eur. J. Org. Chem. 2000, 591-602. (l) Collin, J.-P.; Kern, J.-M.; Raehm,
L.; Sauvage, J.-P. Molecular Switches; Feringa, B. L., Ed.; Wiley-VCH:
Weinheim, 2000; pp 249-280. (m) Altieri, A.; Gatti, F. G.; Kay, E. R.;
Leigh, D. A.; Paolucci, F.; Slawin, A. M. Z.; Wong, J. K. Y. J. Am. Chem.
Soc. 2003, 125, 8644-8654. (n) Poleschak, I.; Kern, J.-M.; Sauvage, J.-P.
Chem. Commun. 2004, 474-476. For examples of optically controllable
molecular machines, see: (o) Ballardini, R.; Balzani, V.; Gandolfi, M. T.;
Prodi, L.; Venturi, M.; Philp, D.; Ricketts, H. G.; Stoddart, J. F. Angew.
Chem., Int. Ed. Engl. 1993, 32, 1301-1303. (p) Ashton, P. R.; Ballardini,
R.; Balzani, V.; Credi, A.; Dress, R.; Ishow, E.; Kocian, O.; Preece, J. A.;
Spencer, N.; Stoddart, J. F.; Venturi, M.; Wenger, S. Chem. Eur. J. 2000,
6, 3558-3574. (q) Brouwer, A. M.; Frochot, C.; Gatti, F. G.; Leigh, D.
A.; Mottier, L.; Paolucci, F.; Roffia, S.; Wurpel, G. W. H. Science 2001,
291, 2124-2128. (r) Collin, J.-P.; Laemmel, A.-C.; Sauvage, J.-P. New. J.
Chem. 2001, 25, 22-24. (s) Bottari, G.; Leigh, D. A.; Pe´rez, E. M. J. Am.
Chem. Soc. 2003, 125, 1360-13361. (t) Gatti, F. G.; Len, S.; Wong, J. K.
Y.; Bottari, G.; Altieri, A.; Morales, M. A. F.; Teat, S. J.; Frochot, C.;
Leigh, D. A.; Brouwer, A. M.; Zerbetto, F. Proc. Natl. Acad. Sci. U.S.A.
2003, 100, 10-14. (u) Altieri, A.; Bottari, G.; Dehez, F.; Leigh, D. A.;
Wong, J. K. Y.; Zerbetto, F. Angew. Chem., Int. Ed. 2003, 42, 2296-
2300. (v) Brouwer, A. M.; Fazio, S. M.; Frochot, C.; Gatti, F. G.; Leigh,
D. A.; Wong, J. K. Y.; Wurpel, G. W. H. Pure Appl. Chem. 2003, 75,
1055-1060.
(10) (a) Chia, S.; Cao, J.; Stoddart, J. F.; Zink, J. I. Angew. Chem., Int. Ed.
2001, 40, 2447-2450. (b) Colasson, B. X.; Dietrich-Buchecker, C.;
Jime´nez-Molero, M. C.; Sauvage, J.-P. J. Phys. Org. Chem. 2002, 15, 476-
483. (c) Hernandez, R.; Tseng, H.-R.; Wong, J. W.; Stoddart, J. F.; Zink,
J. J. Am. Chem. Soc. 2004, 126, 3370-3371. (d) Tseng, H.-R.; Wu, D.;
Fang, N. X.; Zhang, X.; Stoddart, J. F. ChemPhysChem 2004, 5, 111-
116. (e) Huang, T. J.; Tseng, H.-R.; Sha, L.; Lu, W.; Brough, B.; Flood,
A. H.; Yu, B.-D.; Celestre, P. C.; Chang, J. P.; Stoddart, J. F.; Ho, C.-M.
Nano Lett. 2004, 4, 2065-2071.
(11) (a) Stoddart, J. F. Chem. Aust. 1992, 59, 576-577 and 581. (b) Go´mez-
Lo´pez, M.; Preece, J. A.; Stoddart, J. F. Nanotechnology 1996, 7, 183-
192. (c) Balzani, V.; Go´mez-Lo´pez, M.; Stoddart, J. F. Acc. Chem. Res.
1998, 31, 405-414. (d) Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J.
F. Angew. Chem., Int. Ed. 2000, 39, 3348-3391. (e) Harada, A. Acc. Chem.
Res. 2001, 34, 456-464. (f) Schalley, C. A.; Beizai, K.; Vo¨gtle, F. Acc.
Chem. Res. 2001, 34, 465-476. (g) Collin, J.-P.; Dietrich-Buchecker, C.;
Gavin˜a, P.; Jime´nez-Molero, M. C.; Sauvage, J.-P. Acc. Chem. Res. 2001,
34, 477-487. (h) Ballardini, R.; Balzani, V.; Credi, A.; Gandolfi, M. T.;
Venturi, M. Struct. Bonding 2001, 99, 163-188. (i) Raehm, L.; Sauvage,
J.-P. Struct. Bonding 2001, 99, 55-78. (j) Stainer, C. A.; Alderman, S. J.;
Claridge, T. D. W.; Anderson, H. L. Angew. Chem., Int. Ed. 2002, 41,
1769-1772. (k) Balzani, V.; Credi, A.; Venturi, M. Chem. Eur. J. 2002,
8, 5524-5532. (l) Tseng, H.-R.; Stoddart, J. F. Modern Arene Chemistry;
Astruc, D.; Wiley-VCH: Weinheim, 2002; pp 574-599. (m) Chen, Y.;
Jung, G.-Y.; Ohlberg, D. A. A.; Li, X.; Stewart, D. R.; Jeppesen, J. O.;
Nielsen, K. A.; Stoddart, J. F.; Williams, R. S. Nanotechnology 2003, 14,
462-468. (n) Heath, J. R.; Ratner, M. A. Phys. Today 2003, May, 43-49.
(o) Balzani, V.; Credi, A.; Venturi, M. Molecular DeVices and Machines-A
Journey into the Nano World, Wiley-VCH: Weinheim, 2003. (p) Flood,
A. H.; Ramirez, R. J. A.; Deng, W.-Q.; Muller, R. P.; Goddard III, W. A.;
Stoddart, J. F. Aust. J. Chem. 2004, 57, 301-322.
(12) Juodkazis, S.; Mukai, N.; Wakaki, R.; Yamaguchi, A.; Matsuo, S.; Misawa,
H. Nature 2000, 408, 178-181.
(13) Bay, L.; West, K.; Sommer-Larsen, P.; Skaarup, S.; Benslimane, M. AdV.
Mater. 2003, 15, 310-313.
(14) (a) Schneider, H.-J.; Liu, T.; Lomadze, N. Angew. Chem., Int. Ed. 2003,
42, 3544-3546. (b) Schneider, H.-J.; Liu, T.; Lomadze, N.; Palm, B. AdV.
Mater. 2004, 16, 613-615. (c) Schneider, H.-J.; Liu, T. Chem. Commun.
2004, 100-101.
(15) Raguse, B.; Muller, K. H.; Wieczorek, L. AdV. Mater. 2003, 15, 922-
926.
(16) Fritz, J.; Baller, M. K.; Lang, H. P.; Rothuizen, H.; Vettiger, P.; Meyer,
E.; Guntherodt, H. J.; Gerber, C.; Gimzewski, J. K. Science 2000, 288,
316-318.
(17) Baughman, R. H.; Cui, C. X.; Zakhidov, A. A.; Iqbal, Z.; Barisci, J. N.;
Spinks, G. M.; Wallace, G. G.; Mazzoldi, A.; De Rossi, D.; Rinzler, A.
G.; Jaschinski, O.; Roth, S.; Kertesz, M. Science 1999, 284, 1340-1344.
(18) Jousselme, B.; Blanchard, P.; Levillain, E.; Delaunay, J.; Allain, M.;
Richomme, P.; Rondeau, D.; Gallego-Planas, N.; Roncali, J. J. Am. Chem.
Soc. 2003, 125, 1363-1370.
(19) Marsella, M. J.; Reid, R. J.; Estassi, S.; Wang, L. S. J. Am. Chem. Soc.
2002, 124, 12507-12510.
(20) Leigh, D. A.; Wong, J. K. Y.; Dehez, F.; Zerbetto, F. Nature 2003, 424,
174-179.
(21) (a) Huck, N. P. M.; Jager, W. F.; de Lange, B.; Feringa, B. L. Science
1996, 273, 1686-1688. (b) Feringa, B. L.; van Delden, R. A.; Koumura,
N.; Geertsema, E. M. Chem. ReV. 2000, 100, 1789-1816. (c) Feringa, B.
L. Acc. Chem. Res. 2001, 34, 504-513. (d) Van Delden, R. A.; Koumura,
N.; Harada, N.; Feringa, B. L. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4945-
4949. (e) Komura, N.; Geertsema, E. M.; Van Gelder, M. B.; Meetsma,
A.; Feringa, B. L. J. Am. Chem. Soc. 2002, 124, 5037-5051. (f) Van
Delden, R. A.; Hurenkamp, J. H.; Feringa, B. L. Chem. Eur. J. 2003, 9,
2845-2853.
(22) (a) Barboiu, M.; Lehn, J.-M. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 5201-
5206. (b) Barboiu, M.; Vaughan, G.; Kyritsakas, N.; Lehn, J.-M. Chem.
Eur. J. 2003, 9, 763-769. (c) Kolomiets, E.; Berl, V.; Odriozola, I.; Stadler,
A.-M.; Kyritsakas, N.; Lehn, J.-M. Chem. Commun. 2003, 23, 2868-2869.
(d) Petitjean, A.; Khoury, R. G.; Kyritsakas, N.; Lehn, J.-M. J. Am. Chem.
Soc. 2004, 126, 6637-6647. (e) Barboiu, M.; Prodi, L.; Montalti, M.;
Zaccheroni, N.; Kyritsakas, N.; Lehn, J.-M. Chem. Eur. J. 2004, 10, 2953-
2959.
(23) (a) Amabilino, D. B.; Ashton, P. R.; Boyd, S. E., Go´mez-Lo´pez, M.; Hayes,
W.; Stoddart, J. F. J. Org. Chem. 1997, 62, 3062-3075. (b) Tseng, H.-R.;
Vignon, S. A.; Stoddart, J. F. Angew. Chem., Int. Ed. 2003, 42, 1491-
1495. (c) Tseng, H.-R.; Vignon, S. A.; Celestre, P. C.; Perkins, J.; Jeppesen,
J. O.; Fabio, A. D.; Ballardini, R.; Gandolfi, M. T.; Venturi, M.; Balzani,
V.; Stoddart, J. F. Chem. Eur. J. 2004, 10, 155-172.
(24) (a) Blanco, M.-J.; Jime´nez-Molero, M. C.; Chambron, J.-C.; Heitz, V.;
Linke, M.; Sauvage, J.-P. Chem. Soc. ReV. 1999, 28, 293-305. (b) Jime´nez,
M. C.; Dietrich-Buchecker, C.; Sauvage, J.-P.; De Cian, A. Angew. Chem.,
Int. Ed. 2000, 39, 1295-1298. (c) Jime´nez-Molero, M. C.; Dietrich-
Buchecker, C.; Sauvage, J.-P. A. Angew. Chem., Int. Ed. 2000, 39, 3284-
3287. (d) Jime´nez-Molero, M. C.; Dietrich-Buchecker, C.; Sauvage, J.-P.
Chem. Eur. J. 2002, 8, 1456-1466. (e) Dietrich-Buchecker, C.; Jime´nez-
Molero, M. C.; Sartor, V.; Sauvage, J.-P. Pure Appl. Chem. 2003, 75, 1383-
1393.
(25) van Delden, R. A.; Koumura, N.; Harada, N.; Feringa, B. L., Proc. Natl.
Acad. Sci. U.S.A. 2002, 99, 4945-4949.
9
9746 J. AM. CHEM. SOC. VOL. 127, NO. 27, 2005