Oxidative dehydration of 2ꢀ(SR)arenecarboxamides Russ.Chem.Bull., Int.Ed., Vol. 53, No. 4, April, 2004
Table 2 (continued)
921
Comꢀ Yield
pound (%)
M.p.
/°C
Found
Calculated
Molecular
formula
1H NMR
(δ, J/Hz)
(%)
С
H
N
S
12a
12b
96
81
196—200
193—196
44.47 4.19 11.33 13.40 C9H10N2O4S
44.62 4.16 11.56 13.24
1.21 (t, 3 H, Me, J = 7.0); 2.75 and 3.26 (both m,
2 H each, CH2S); 7.75 (s, 1 H, NH); 8.18 (d, 1 H,
H(6), J = 8.0); 8.36 (d, 1 H, H(5), J = 8.0); 8.39
(s, 1 H, NH); 8.77 (s, 1 H, H(3))
46.92 4.69 10.88 12.64 C10H12N2O4S 1.07 (t, 3 H, Me, J = 7.0); 1.66 and 1.90 (both m,
46.87 4.72 10.93 12.51
2 H each, CH2); 2.61 and 3.24 (both m, 2 H each,
CH2S); 7.79 (s, 1 H, NH); 8.17 (d, 1 H, H(6),
J = 8.0); 8.37 (d, 1 H, H(5), J = 8.0); 8.41 (s,
1 H, NH); 8.80 (s, 1 H, H(3))
12c
90
157—159
55.31 6.61 8.70 9.76
55.19 6.79 8.58 9.82
C15H22N2O4S 0.89 (t, 3 H, Me, J = 7.0); 1.31 (m, 8 H, 4 CH2);
1.41 and 1.45 (both m, 2 H each, CH2); 1.62
and 1.78 (both m, 2 H each, CH2); 2.61 and 3.15
(both m, 2 H each, CH2S); 7.69 (s, 1 H, NH); 8.17
(d, 1 H, H(6), J = 8.0); 8.35 (m, 2 H, H(5) + NH);
8.81 (s, 1 H, H(3))
12d
12g
91
81
245—248
162—164
53.83 3.52 9.69 11.23 C13H10N2O4S 7.92 (m, 3 H, pꢀPh + mꢀPh); 7.70 (d, 2 H, oꢀPh,
53.79 3.47 9.65 11.05
J = 7.5); 7.86 (s, 1 H, NH); 8.08 (d, 1 H, H(6),
J = 8.5); 8.47 (m, 2 H, H(5) + NH); 8.90 (s, 1 H,
H(3))
48.71 5.13 10.48 11.91 C11H14N2O4S 0.97 (t, 3 H, Me, J = 7.0); 1.48 (m, 2 H, CH2); 1.60
48.88 5.22 10.36 11.86
and 1.86 (both m, 2 H each, CH2); 2.62 and 3.27
(both m, 2 H each, CH2S); 7.73 (s, 1 H, NH); 8.16
(d, 1 H, H(6), J = 8.5); 8.32 (m, 2 H, H(5) + NH);
8.80 (s, 1 H, H(3))
12h
82
276—279
55.41 4.04 9.11 10.68 C14H12N2O4S 2.34 (s, 3 H, Me); 7.21 (d, 2 H, CH, J = 8.5);
55.25 3.97 9.21 10.54
7.62 (d, 2 H, CH, J = 8.5); 7.72 (s, 1 H, NH);
8.09 (d, 1 H, H(6), J = 8.8); 8.30 (s, 1 H, NH);
8.33 (d, 1 H, H(5), J = 8.8); 8.91 (s, 1 H, H(3))
1.43 (t, 3 H, Me, J = 6.6); 3.24 (q, 2 H, CH2,
J = 6.6); 8.02 (d, 1 H, H(6), J = 9.8); 8.08 (d, 1 H,
H(5), J = 9.8); 8.16 (s, 1 H, H(3))
14a
14d
97
89
131—133
139—142
52.21 3.62 13.56 15.42 C9H8N2O2S
51.91 3.87 13.45 15.40
61.19 3.01 11.14 12.20 C13H8N2O2S
60.92 3.15 10.93 12.51
7.61 (m, 3 H, pꢀPh + mꢀPh); 7.63 (d, 2 H, oꢀPh,
J = 7.5); 7.73 (s, 1 H, H(3)); 8.15 (d, 1 H, H(6),
J = 8.3); 8.19 (d, 1 H, H(5), J = 8.3)
* The yields of 7a,d and 9b in the reactions of nitriles 14a,d and 15b with H2O2 in AcOH.
** The yields of 7a—d,g,h in the reactions of sulfoxides 12a—d,g,h with Cl2 in AcOH.
*** The yield of 9a in the reaction of nitrile 15a with mꢀCPBA in CH2Cl2.
Table 3. Characteristics of the mass spectra of compounds 9a—e
and 12d,h
ning technique, scan step was 0.3°, frames were exposed for 10 s).
The Xꢀray data for compound 10 were collected on a Syntex P21
diffractometer (MoꢀKα radiation, λ = 0.71073 Å). Both strucꢀ
tures were solved by direct methods. The positions and therꢀ
mal parameters of the nonhydrogen atom were refined first
isotropically and then anisotropically by the fullꢀmatrix leastꢀ
squares method. The H atoms in the structure of 8c were
placed in geometrically calculated positions and refined using
the riding model. The H atoms in the structure of 10 were
located from a difference electron density map and refined
isotropically. In the structure of 8c, the butyl group is disordered
over two positions with occupancies of 0.7/0.3 (in Fig. 1, the
minor component is shown by gray lines). All calculations were
carried out on a personal computer using the SHELXTL proꢀ
gram package.20
Comꢀ
pound
MS (EI, 70 eV),
m/z (Irel (%))
9а
9b
9c
9d
9e
218 [М]+ (61), 203 (5), 189 (14), 171 (3)
224 [М]+ (12), 222 [М]+ (27), 207 (7), 191 (2), 175 (3)
260 [М]+ (7), 233 (1), 205 (4), 195 (14)
264 [М]+ (16), 217 (1), 200 (9)
266 [М]+ (10), 251 (2), 235 (1), 204 (36)
290 [M]+ (5), 274 (2), 213 (7), 197 (100), 167 (7),
151 (20), 125 (15), 109 (10), 77 (25)
304 [M]+ (4), 288 (4), 213 (3), 197 (100), 167 (5),
151 (15), 139 (35), 123 (10), 91 (20), 77 (10)
12d
12h