Organic Letters
Letter
A.; Palle, V. P.; Kamboj, R. K. International Patent No. WO 124828
A1, 2013.
(14) Kim, E. E.; Onyango, E. O.; Fu, L.; Gribble, G. W. Tetrahedron
Lett. 2015, 56, 6707−6710.
(15) The structure of spiroacetal 10 was identified by extensive 2D
(16) Even when the reaction was performed for a longer time under
the same conditions (60 min), 1,2-quinone 9 still slightly remained,
while the yields of the product 10 and byproduct 11 were almost
unchanged.
ACKNOWLEDGMENTS
■
This research was supported by JSPS KAKENHI Grant Nos.
JP16H06351 and JP26810018, and Grant for Basic Science
Research Projects from The Sumitomo Foundation. We are
grateful to Prof. Hidehiro Uekusa and Dr. Haruki Sugiyama
(Tokyo Institute of Technology) for X-ray diffraction analysis.
We thank one of the referees, who suggested a kinetic isotope
effect, which will be examined in due course.
(17) Bicyclic compound 11 was obtained as a single diastereomer.
REFERENCES
■
(18) (a) Yang, N. C.; Yang, D.-D. H. J. Am. Chem. Soc. 1958, 80,
2913−2914. For review, see: (b) Wessig, P. Regioselective Photo-
chemical Synthesis of Carbo- and Heterocyclic Compounds: The
Norrish/Yang Reaction. In CRC Handbook of Organic Photochemistry
and Photobiology, 2nd Edition; Horspool, W., Lenci, F., Eds.; CRC
Press: Boca Raton, FL, 2004; Chapter 57, pp 57-1−57-20.
(19) Analytical HPLC conditions: 7; DAICEL CHIRALPAK IF
(0.46 cm φ × 25 cm), solvent: hexane/i-PrOH = 99/1, 25 °C, flow
rate = 1 mL/min, UV: 254 nm, tR = 14.5 min for (S)-isomer and 17.1
min for (R)-isomer. 10; DAICEL CHIRALPAK IB (0.46 cm φ × 25
cm), solvent: hexane/EtOAc = 85/15, 25 °C, flow rate = 1 mL/min,
UV: 254 nm, tR = 8.9 min for (R)-isomer and 10.1 min for (S)-isomer.
(21) Tables 2 and 3 do not show the yields of the side product 11
and recovered naphthoquinone 9, which are shown in the Supporting
(22) Swain, C. G.; Swain, M. S.; Powell, A. L.; Alunni, S. J. Am.
Chem. Soc. 1983, 105, 502−513.
(23) (a) Edwards, O. E.; Ho, P.-T. Can. J. Chem. 1978, 56, 733−742.
(b) Hirao, Y.; Nagamachi, N.; Hosoi, K.; Kubo, T. Chem.Asian J.
2018, 13, 510−513.
(1) (a) Perron, F.; Albizati, K. F. Chem. Rev. 1989, 89, 1617−1661.
(b) Aho, J. E.; Pihko, P. M.; Rissa, T. K. Chem. Rev. 2005, 105, 4406−
4440. (c) Brasholz, M.; Sorgel, S.; Azap, C.; Reissig, H.−U. Eur. J.
̈
Org. Chem. 2007, 2007, 3801−3814. (d) Favre, S.; Vogel, P.; Gerber-
Lemaire, S. Molecules 2008, 13, 2570−2600. (e) Rizzacasa, M. A.;
Pollex, A. Org. Biomol. Chem. 2009, 7, 1053−1059. (f) Sperry, J.; Liu,
Y.-C. W.; Brimble, M. A. Org. Biomol. Chem. 2010, 8, 29−38.
(g) Palmes, J. A.; Aponick, A. Synthesis 2012, 44, 3699−3721.
(h) Wilsdorf, M.; Reissig, H.−U. Angew. Chem., Int. Ed. 2012, 51,
9486−9488.
(2) Mori, K.; Watanabe, H. Tetrahedron 1986, 42, 295−304 and the
references cited therein.
(3) (a) Mori, K.; Tamon, U.; Hidenori, W.; Kazunori, Y.; Masao, M.
Tetrahedron Lett. 1984, 25, 3875−3878. (b) Redlich, H.; Francke, W.
Angew. Chem., Int. Ed. Engl. 1984, 23, 519−520.
̌
́
(4) Coric, I.; List, B. Nature 2012, 483, 315−319.
(5) (a) Sun, Z.; Winschel, G. A.; Borovika, A.; Nagorny, P. J. Am.
Chem. Soc. 2012, 134, 8074−8077. (b) Khomutnyk, Y. Y.; Arguelles,
̈
A. J.; Winschel, G. A.; Sun, Z.; Zimmerman, P. M.; Nagorny, P. J. Am.
Chem. Soc. 2016, 138, 444−456. (c) Quach, R.; Furkert, D. P.;
Brimble, M. A. Tetrahedron Lett. 2013, 54, 5865−5868. (d) Rexit, A.
A.; Mailikezati, M. Tetrahedron Lett. 2015, 56, 2651−2655.
(6) (a) Puder, C.; Loya, S.; Hizi, A.; Zeeck, A. Eur. J. Org. Chem.
2000, 2000, 729−735. (b) Bringmann, G.; Kraus, J.; Schmitt, U.;
Puder, C.; Zeeck, A. Eur. J. Org. Chem. 2000, 2000, 2729−2734.
(7) For total syntheses, see: (a) Akai, S.; Kakiguchi, K.; Nakamura,
Y.; Kuriwaki, I.; Dohi, T.; Harada, S.; Kubo, O.; Morita, N.; Kita, Y.
Angew. Chem., Int. Ed. 2007, 46, 7458−7461. (b) Wu, K.-L.; Mercado,
E. V.; Pettus, T. R. R. J. Am. Chem. Soc. 2011, 133, 6114−6117.
(c) Wilsdorf, M.; Reissig, H.-U. Angew. Chem., Int. Ed. 2014, 53,
4332−4336. For formal syntheses, see: (d) Rathwell, D. C. K.; Yang,
S. H.; Tsang, K. Y.; Brimble, M. A. Angew. Chem., Int. Ed. 2009, 48,
7996−8000. (e) Wei, L.; Xue, J.; Liu, H.; Wang, W.; Li, Y. Org. Lett.
2012, 14, 5302−5305.
(8) For the total synthesis of the γ-rubromycin congener
heliquinomycinone, see: (a) Qin, D. H.; Ren, R. X.; Siu, T.; Zheng,
C.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2001, 40, 4709−4713.
(b) Siu, T.; Qin, D. H.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2001,
40, 4713−4716. For the total synthesis of the γ-rubromycin congener
δ-rubromycin, see: (c) Wang, W.; Xue, J.; Tian, T.; Zhang, J.; Wei, L.;
Shao, J.; Xie, Z.; Li, Y. Org. Lett. 2013, 15, 2402−2405.
(9) Yunt, Z.; Reinhardt, K.; Li, A.; Engeser, M.; Dahse, H.-M.;
Gutschow, M.; Bruhn, T.; Bringmann, G.; Piel, J. J. Am. Chem. Soc.
̈
2009, 131, 2297−2305.
(10) Ando, Y.; Matsumoto, T.; Suzuki, K. Synlett 2017, 28, 1040−
1045.
(11) Ando, Y.; Hanaki, A.; Sasaki, R.; Ohmori, K.; Suzuki, K. Angew.
Chem., Int. Ed. 2017, 56, 11460−11465.
(12) For scattered examples for the photoredox reaction of 1,2-
naphthoquinones, see: (a) Ferreira, M. A.; King, T. J.; Ali, S.;
Thomson, R. H. J. Chem. Soc., Perkin Trans. 1 1980, 249−256.
(b) Ando, Y.; Wakita, F.; Ohmori, K.; Suzuki, K. Bioorg. Med. Chem.
(13) (a) Kwak, J.-H.; Won, S.-W.; Kim, T.-J.; Roh, E.; Kang, H.-Y.;
Lee, H. W.; Jung, J.-K.; Hwang, B. Y.; Kim, Y.; Cho, J.; Lee, H. Arch.
Pharmacal Res. 2008, 31, 133−141. (b) Shukla, M. R.; Sarde, A. G.;
Loriya, R. M.; Pachpute, V. D.; Walke, N. B.; Khan, T. H.; Kulkarni, S.
E
Org. Lett. XXXX, XXX, XXX−XXX