R. L. Dow et al. / Bioorg. Med. Chem. Lett. 14 (2004) 3235–3240
Table 4. b-Adrenergic activities for series 1715
3239
NRR0
b3-AR EC50 lM (IA)
b2-AR IA @ 30 lM
b1-AR IA @ 30 lM
2
0.003 (92)
0.038 (98)
0.010 (91)
0.047 (106)
0.025 (110)
0.004 (89)
0.007 (107)
0.165 (103)
0.041 (79)
0.018 (105)
0.008 (85)
1
7
1
10
12
20
17
7
17a
17b
17c
17d
17e
17f
17g
17h
17i
17j
Dimethylamino
4-Methylpiperidinyl
4-Phenylpiperidinyl
Cyclohexylamino
6
9
19
11
8
cis-3,5-Dimethylpiperidinyl
Anilino
29
28
7
2-Methoxyethyl-amino
N-Methylpiperizinyl
N-Benzylpiperizinyl
cis-3,5-Dimethylmorpholinyl
24
4
13
8
46
10
and human microsomal intrinsic clearances for 17e are
466 and 130 mL/min/kg, respectively. Since the in vitro
clearances tended to track with the molecular weight/
lipophilicity of the sulfamide group, a series of analogs
were prepared in which polar/ionic functionality was
incorporated into the sulfamide. Afew representative
examples are provided in Table 4 (17g–j). Incorporation
of small alkoxy (17g) or tertiary amine (17h) containing
sulfamide functionalities lead to significantly reduced
clearances, though they also suffered significant reduc-
tions in b3-AR agonist activity. Adding additional
lipophilicity (17i) to the tertiary amine of 17h enhances
the functional response, but not surprisingly reacquires
microsomal lability. Substitution of the 4-methylene
substituent of the high potency 3,5-dimethylpiperidinyl
analog 17e with an oxygen atom providing morpholine
17j, maintains single-digit nanomolar potency and
excellent selectivity. This activity profile for 17j is further
confirmed through b-AR binding studies that demon-
strate high b3-AR binding affinity (7 nM), with relatively
weak binding to the b1-AR (9750 nM) and b2-AR
(1400 nM).
References and notes
1. Ahlquist, R. P. Am. J. Physiol. 1948, 153, 586.
2. Lands, A. M.; Arnold, A.; McAuliff, J. P.; Luduena, F. P.;
Brown, T. G. Nature 1967, 214, 597.
3. Tan, S.; Curtis-Prior, P. B. Int. J. Obes. 1982, 7, 409.
4. For reviews of the subject see: (a) Dow, R. L. Exp. Opin.
Invest. Drugs 1997, 6, 1811; (b) Weber, A. E. Ann. Rep.
Med. Chem. 1998, 33, 193.
5. Emorine, L. J.; Marullo, S.; Briend-Sutren, M.-M.; Patey,
G.; Devalier-Klutchko, C.; Strosberg, A. D. Science 1989,
245, 1118.
6. Liggett, S. Mol. Pharmacol. 1992, 42, 634.
7. Mathvink, R. J.; Tolman, J. S.; Chitty, D.; Candelore, M.
R.; Cascieri, M. A.; Colwell, L. F., Jr.; Deng, L.; Feeney,
W. P.; Forrest, M. J.; Hom, G. J.; MacIntyre, D. E.;
Miller, R. R.; Stearns, R. A.; Tota, L.; Wyvratt, M. J.;
Fisher, M. H.; Weber, A. E. J. Med. Chem. 2000, 43, 3832,
and references cited therein.
8. van Baak, M. A.; Hul, G. B. J.; Toubro, S.; Astrup, A.;
Gottesdiener, K. M.; DeSmet, M.; Saris, W. H. M. Clin.
Pharmacol. Ther. 2002, 71, 272.
9. Larsen, T. M.; Toubro, S.; van Baak, M. A.; Gottesdiener,
K. M.; Larson, P.; Saris, W. H. M.; Astrup, A. Am.
J. Clin. Nutr. 2002, 76, 780.
10. Stearns, R. A.; Miller, R. R.; Tang, W.; Kwei, G. Y.;
Tang, F. S.; Mathvink, R. J.; Naylor, E. M.; Chitty, D.;
Colandrea, V. J.; Weber, A. E.; Colletti, A. E.; Strauss, J.
R.; Keohane, C. A.; Feeney, W. P.; Iliff, S. A.; Chiu, S.-H.
L. Drug Metab. Disp. 2002, 30, 771.
More importantly, the rat and human microsomal
intrinsic clearances of this compound are reduced to 165
and 11 mL/min/kg, respectively. With a molecular
weight of 463 and a cLogP ¼ 2.6 there is an expectation
that this compound should also not have the oral
absorption issues associated with 2.
11. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney,
P. J. Adv. Drug Del. Rev. 1997, 23, 3.
12. Sulfamoyl chlorides were prepared by treating the appro-
priate sodium sulfamate (synthesized via reported proce-
dure: Wiley, R. A.; Pearson, D. A.; Schmidt, V.; Wesche,
S. B.; Roxon, J. J. J. Med. Chem. 1983, 26, 1077) with of
phosphorus oxychloride (2 equiv) at 80 °C in 1,2-dichloro-
ethane for 18 h, cooling, adding an equal volume of
hexanes, filtering, and concentrating the filtrate in vacuo.
13. Dow, R. L.; Schneider, S. R. European Patent Application
1138685, 2001; Chem. Abstr. 2001, 135, 288694.
14. Milecki, J.; Baker, S. P.; Standifer, K. M.; Ishizu, T.;
Chida, Y.; Kusiak, J. W.; Pitha, J. J. Med. Chem. 1987, 30,
1563.
Increases in oxygen consumption in the rat has been
utilized as a surrogate endpoint for determination of
increased energy expenditure produced by b3-AR
agonists.16 When dosed intraperitoneally at 30 mg/kg,
17j produces a 38 6% increase in oxygen consumption
relative to the control animals.17 This effect was dose
responsive with 10 mg/kg resulting in a 26 3% increase.
When dosed orally in rats at 30 mg/kg, 17j elicits a
35 3% increase in oxygen consumption. That this oral
response is similar to that seen from intraperitoneal
administration supports the hypothesis that 17j has
good oral absorption.
15. Agonist activities (EC50) were assessed by measuring
cAMP levels in CHO cells expressing cloned human
b-adrenergic receptors. Intrinsic activities (IA) represent
the percentage of the maximal response attained by
isoproterenol. NT ¼ Not tested.
In conclusion, this study has detailed the discovery of a
novel series of highly potent and selective b3-AR agon-
ists. These compounds have physiochemical properties
that are projected to lead to good oral absorption, which
is supported by preliminary in vivo efficacy studies.
16. Depocas, F.; Hart, J. S. J. Appl. Physiol. 1957, 10, 388.
17. Animals are removed from general housing first thing in
the morning (7:00–7:30 am) and are deprived of food and