(dY = 0 ppm) containing 1 mol% GdCl3. For the measurement
of the mixed YIII/GdIII complex, a 0.5 M aqueous solution in
a 10 mm tube (overall volume about 2 ml) was utilized. The
89Y T1 relaxation times were measured by the standard inversion
recovery technique with 0.5 s repetition time (d1) and pulse delay
(d2) incremented in the range 0.0003–0.154 s to 9 exponentially
sampled points. For each increment about 6000 transients were
accumulated. Measurements were done at 25 ◦C and pH 7.
and MIUR (FIRB). M. B., P. H. and J. R. gratefully acknowledge
the invaluable support of a NATO travel grant (No. PST.CLG
980045). The work was carried out within the frame of COST
D18 and the EU-supported NoE projects EMIL (No. LSHC-
2004-503569) and DiMI (No. LSHB-2005-512146).
References and notes
1 The Chemistry of Contrast Agents in Medical Magnetic Resonance
1H relaxation measurements and 1H NMRD profiles
´
Imaging, ed. A. E. Merbach and E. To´th, Wiley, Chichester, UK, 2001.
2 Topics in Current Chemistry, Springer Verlag, Heidelberg, 2002, vol.
The water proton NMRD profiles were measured at 25 and 37 ◦C
with a Stelar Spinmaster Spectrometer FFC-2000 (Mede, Pv,
Italy) on about 1 mmol gadolinium solutions in non-deuterated
water. The exact concentration of the solutions was determined by
measurement of the bulk magnetic susceptibility shifts of a tBuOH
signal.43 The 1H T1 relaxation times were acquired by the standard
inversion recovery method with typical 90◦ pulse width of 3.5 ls,
16 experiments of 4 scans. The reproducibility of the T1 data
was 5%. The temperature was controlled with a Stelar VTC-
91 airflow heater equipped with a calibrated copper-constantan
thermocouple (uncertainty of 0.1 ◦C). The NMRD profiles were
measured over a range of magnetic fields from 0.00024 to 1.6 T
(corresponding to 0.01–70 MHz proton Larmor frequencies).
221.
3 P. Caravan, J. J. Ellison, T. J. McMurry and R. B. Laufer, Chem. Rev.,
1999, 99, 2293.
4 S. Aime, M. Botta and E. Terreno, Adv. Inorg. Chem., 2005, 57, 173.
5 S. Aime, M. Botta, M. Fasano and E. Terreno, Acc. Chem. Res., 1999,
32, 941.
6 S. Aime, C. Cabella, S. Colombatto, S. G. Crich, E. Gianolio and F.
Maggioni, J. Magn. Reson. Imag., 2002, 16, 394.
7 M. Woods, Z. Kovacs and A. D. Sherry, J. Supramol. Chem., 2002, 2,
1.
8 V. J. Venditto, C. A. S. Regino and M. W. Brechbiel, Mol. Pharm., 2005,
2, 302.
´
´
9 (a) S. Laus, R. Ruloff, E. To´th and A. E. Merbach, Chem. Eur. J., 2003,
9, 3555; (b) R. Ruloff, E. To´th, R. Scopelliti, R. Tripier, H. Handel and
A. E. Merbach, Chem. Commun., 2002, 2630.
´
10 Z. Ja´szbere´nyi, A. Sour, E. To´th, M. Benmelouka and A. E. Merbach,
Dalton Trans., 2005, 2713.
17O relaxation measurements
11 (a) M. Woods, Z. Kovacs, S. Zhang and A. D. Sherry, Angew. Chem.,
Int. Ed., 2003, 42, 5889; (b) M. Woods, M. Botta, S. Avedano, J. Wang
and A. D. Sherry, Dalton Trans., 2005, 3829.
Variable-temperature 17O NMR relaxation measurement were
performed on a JEOL EX-90 (2.1 T, 12.2 MHz) spectrometer
with external locking system (D2O). Experimental settings were:
spectral width 10 000 Hz, pulse width 7 ls (90◦), acquisition time
10 ms, 2048 scans and no sample spinning. The complex solutions
were enriched by addition of H217O (6%, Yeda, Israel) to give ca.
0.2% 17O concentration. Transversal 17O NMR relaxation rates,
R2, were calculated from the line-width at half-height of the 1◦7O
signals. The 17O R2 data were measured from 0–90 ◦C with 10 C
increments. In order to stabilize the temperature, the samples
were maintained in the probe for at least 10 min prior to the
measurements being taken.
12 (a) P. Lebdusˇkova´, J. Kotek, P. Hermann, L. V. Elst, R. N. Muller,
I. Lukesˇ and J. A. Peters, Bioconjugate Chem., 2004, 15, 881; (b) J.
Kotek, P. Lebduskova, P. Hermann, L. Vander Elst, R. N. Muller, T.
Maschmeyer, I. Lukesˇ and J. A. Peters, Chem. Eur. J., 2003, 9, 5899.
13 J. Rudovsky´, P. C´ıgler, J. Kotek, P. Hermann, P. Vojt´ısˇek, I. Lukesˇ, J. A.
Peters, L. V. Elst and R. N. Muller, Chem. Eur. J., 2005, 11, 2373.
14 (a) J. Rudovsky´, J. Kotek, P. Hermann, I. Lukesˇ, V. Mainero and S.
Aime, Org. Biomol. Chem., 2005, 3, 112; (b) J. Kotek, J. Rudovsky´, P.
Hermann and I. Lukesˇ, Inorg. Chem., 2006, 45, 3097.
15 M. Pola´sˇek, J. Rudovsky´, P. Hermann, I. Lukesˇ, L. V. Elst and R. N.
Muller, Chem. Commun., 2004, 2602.
ˇ
´
16 M. Botta, Eur. J. Inorg. Chem., 2000, 399.
17 J. Rudovsky´, P. Hermann, M. Botta, S. Aime and I. Lukesˇ, Chem.
Commun., 2005, 2390.
18 D. H. Powell, O. M. N. Dhubhghaill, D. Pubanz, L. Helm, Y. S. Lebedev,
W. Schlaepfer and A. E. Merbach, J. Am. Chem. Soc., 1996, 118,
9333.
Best fitting procedure
´
19 E. To´th, S. Vauthey, D. Pubanz and A. E. Merbach, Inorg. Chem., 1996,
The analysis of the 1H NMRD and 17O NMR T2 data were
performed with Micromath Scientist44 fitting routines based on
SBM, Freed and Swift–Connick equations (refer to ESI†).1,2,5,35
All the data were pre-processed and post-processed in Microcal
Origin.45
35, 3375.
20 E. Zitha-Bovens, L. Vander Elst, R. N. Muller, H. van Bekkum and
J. A. Peters, Eur. J. Inorg. Chem., 2001, 3101.
21 T.-M. Lee, T.-H. Cheng, M.-H. Ou, C. A. Chang, G.-C. Liu and Y.-M.
Wang, Magn. Reson. Chem., 2004, 42, 329.
22 (a) W. H. Li, S. E. Fraser and T. J. Meade, J. Am. Chem. Soc., 1999, 121,
1413; (b) W. H. Li, G. Parigi, M. Fragai, C. Luchinat and T. J. Meade,
Inorg. Chem., 2002, 41, 1418.
23 V. Comblin, D. Gilsoul, M. Hermann, V. Humblet, V. Jacques, M.
Mesbahi, C. Sauvage and J. F. Desreux, Coord. Chem. Rev., 1999, 186,
451.
Molecular modeling and graphical export
Molecular modeling was carried out using the Hypercube Hyper-
chem 6.01 program package with the MM+ force-field taking into
account only bond dipoles.46 The final data were then exported
to MSI WebLab ViewerPro 4.0 where the solvent accessibility
surfaces were also calculated.47
24 (a) R. Ruloff, G. van Koten and A. E. Merbach, Chem. Commun., 2004,
´
842; (b) J. B. Livramento, E. To´th, A. Sour, A. Borel, A. E. Merbach
and R. Ruloff, Angew. Chem., Int. Ed., 2005, 44, 1480; (c) J. Costa, R.
Ruloff, L. Burai, L. Helm and A. E. Merbach, J. Am. Chem. Soc., 2005,
´
127, 5147; (d) J. Costa, E. To´th, L. Helm and A. E. Merbach, Inorg.
Chem., 2005, 44, 4747; (e) J. B. Livramento, A. Sour, A. Borel, A. E.
´
Merbach and E. To´th, Chem. Eur. J., 2006, 12, 989.
Acknowledgements
25 S. Liu and D. S. Edwards, Bioconjugate Chem., 2001, 12, 7.
26 All lanthanide-containing NMR samples were tested for the presence
of free lanthanide(III) by dropping the test solution into a urotropine
buffered water solution of xylenol orange (pH 5). If the solution
remained orange the test was negative.
The authors are thankful to Vojteˇch Kub´ıcˇek and Dr David Sy´kora
for the measurement of the mass spectra. We are grateful to the
ˇ
GACR (grant No. 203/03/0168), GAUK (423/2004/B-CH/PrF)
2332 | Dalton Trans., 2006, 2323–2333
This journal is
The Royal Society of Chemistry 2006
©