5206
X. Zhang et al. / Bioorg. Med. Chem. Lett. 15 (2005) 5202–5206
Tsujihara, K. Chem. Pharm. Bull. 1998, 46, 22; (c)
Tsujihara, K.; Hongu, M.; Saito, K.; Kawanishi, H.;
Kuriyama, K.; Matsumoto, M.; Oku, A.; Ueta, K.; Tsuda,
M.; Saito, A. J. Med. Chem. 1999, 42, 5311; (d) Doggrell,
S. A.; Castaner, J. Drugs Future 2001, 26, 750; (e) Kumiko,
N.; Koichiro, Y.; Tetsuya, A.; Yoshimasa, O.; Nobuyuki,
S.; Mika, U.; Akiko, T.; Naoko, S.; Akika, O.; Kinsuke,
T. Clin. Exp. Pharmacol. Physiol. 2002, 29, 386.
the ylide derived from triethylphosphonoacetate affor-
ded a 1H-quinolin-2-one in 31% yield.12 Subsequent
deprotection of the phenol group provided aglycone
24. Glycosylation and deprotection as described above
gave analogue 25 in low yield.9d
All compounds were screened in a cell-based SGLT
functional assay,13 and IC50 values are presented in Ta-
ble 1. The indazole analogues 6a–d showed only moder-
ate inhibitory activity toward SGTL2, but were selective
for SGLT2 compared to the parent compound 1.
Replacement of the benzofuran in analogue 6a with
2,3-dihydrobenzofuran in compound 6b did not change
the SGLT2 inhibitory activity. However, the benzofuran
moiety could cause unwanted P450 inhibition of 1.
6. Dudash, J., Jr.; Zhang, X.; Zeck, R. E.; Johnson, S. G.;
Cox, G. G.; Conway, B. R.; Rybczynski, P. J.; Demarest,
K. T. Bioorg. Med. Chem. Lett. 2004, 14, 5121.
7. (a) Ohsumi, K.; Matsueda, H.; Hatanaka, T.; Hirama, R.;
Umemura, T.; Oonuki, A.; Ishida, N.; Kageyama, Y.;
Maezono, K.; Kondo, N. Bioorg. Med. Chem. Lett. 2003,
13, 2269; (b) Nishimura, T.; Fujikura, H.; Fushimi, N.;
Tatani, K.; Katsuno, K.; Isaji, M. WO03/000712, 2003;
Chem. Abstr. 2003, 138, 49945; (c) Nishimura, T.; Fush-
imi, N.; Fujikura, H.; Katsuno, K.; Komatsu, Y.; Isaji, M.
WO02/068439; Chem. Abstr. 2002, 137, 232854; (d)
Fujikura, H.; Fushimi, N.; Nishimura, T.; Tatani, K.;
Katsuno, K.; Hiratochi, M.; Tokutake, Y.; Isaji, M.
WO01/68660; Chem. Abstr. 2003, 135, 242456; (e) Wash-
burn, W. N.; Ellsworth, B.; Meng, W.; Wu, G.; Sher, P.
M. US03/0114390; Chem. Abstr. 2003, 139, 36736.
8. Boehm, H.; Boehringer, M.; Bur, D.; Gmuender, H.;
Huber, W.; Klaus, W.; Kostrewa, D.; Kuehne, H.;
Luebbers, T.; Meunier-Keller, N.; Mueller, F. J. Med.
Chem. 2000, 43, 2664.
The SAR of compound 1 suggested that the phenol
group at the 60-position participates in a hydrogen
bonding interaction,5b,6 which supported the computa-
tional hypotheses by Weilert-Badt et al.14 However, this
trend was not observed with the heterocyclic analogues.
Good activity was preserved when the N-1 position of
the indole was alkylated as in compound 10b. Likewise,
the lack of hydrogen bonding ability at the N-1 position
of the benzimidazoles 18 did not diminish SGLT2 inhib-
itory activity. In addition, urea 20 and lactam 25 showed
much weaker SGLT2 inhibitory activity than the other
scaffolds, though this may be due to steric effects.
9. All compounds provided satisfactory spectral data (1H
NMR, LCMS) and were homogeneous by TLC. Detailed
experimental procedures have been published in the
following patent applications: (a) Patel, M.; Rybczynski,
P.; Urbanski, M.; Zhang, X. WO05/011592A2; Chem.
Abstr. 2005, 142, 198298; (b) Beavers, M. P.; Patel, M.;
Urbanski, M.; Zhang, X. WO05/012243A2; Chem Abstr.
2005, 142, 219489; (c) Urbanski, M. WO05/012242A2;
Chem Abstr. 2005, 142, 219492.
In summary, we have demonstrated that the ketone/phe-
nol portion of compound 1 can be replaced with a ben-
zo-fused heterocycle while retaining the desired in vitro
SGLT2 inhibitory activity. Further modification of this
series will be reported in due course.
10. Compound 7a is commercially available. Compound 7b
was prepared by methylation of the sodium salt of 7a with
methyl iodide in DMF. Compound 7c was prepared using
literature procedures: (a) Blair, J. B.; Kurrasch-Orbaugh,
D.; Marona-Lewicka, D.; Cumbay, M. G.; Watts, V. J.;
Barker, E. L.; Nichols, D. E. J. Med. Chem. 2000, 43,
4710; (b) Fresneda, P. M.; Molina, P.; Bleda, J. A.
Tetrahedron 2001, 57, 2355.
References and notes
1. (a) Lee, W.-S.; Kanai, Y.; Well, R. G.; Hediger, M. A. J.
Biol. Chem. 1994, 269, 12032; (b) You, G.; Lee, W.-S.;
Barros, E. J. G.; Kanai, Y.; Huo, T.-L.; Khawaja, S.;
Wells, R. G.; Nigam, S. K.; Heidiger, M. A. J. Biol. Chem.
1995, 270, 29365.
11. Yamada, F.; Hayashi, T.; Yamada, K.; Somer, M.
Heterocycles 2000, 53, 1881.
2. Wagman, A. S.; Nuss, J. M. Curr. Pharm. Des. 2001, 7,
417.
3. Zhou, L.; Cryan, E. V.; DꢀAndrea, M. D.; Belkowski, S.;
Conway, B. R.; Demarest, K. T. J. Cell. Biochem. 2003,
90, 339.
4. (a) Diez-Samperdro, A.; Hirayama, B.; Osswald, C.;
Gorboulev, V.; Baumgarten, K.; Volk, C.; Wright, E.;
Koepsell, H. Proc. Natl. Acad. Sci. U.S.A. 2003, 100,
11753; (b) Tazawa, S.; Yamato, T.; Fujikura, H.; Hirato-
chi, M.; Itoh, F.; Tomae, M.; Takemura, Y.; Maruyama,
H.; Sugiyama, T.; Wakamatsu, A.; Isogai, T.; Isaji, M.
Life Sci. 2005, 76, 1039.
5. (a) Rossetti, L.; Smith, D.; Shulman, G. I.; Papachristou,
D.; DeFronzo, R. A. J. Clin. Invest. 1987, 79, 1510; (b)
Hongu, M.; Tanaka, T.; Funami, N.; Takahashi, Y.;
Saito, K.; Arakawa, K.; Matsumoto, M.; Yamakita, H.;
12. Alabaster, C.; Bell, A. S.; Campbell, S. F.; Ellis, P.;
Henderson, C. G.; Morris, D. S.; Roberts, D. A.;
Ruddock, K. S.; Samuels, G. M. R.; Stefaniak, M. H.
J. Med. Chem. 1989, 32, 575.
13. CHO-K1 cells overexpressing human SGLT2 or SGLT1
were used in cell-based functional screens. Cells were
treated with compound in the absence or presence of NaCl
for 15 min. Cells were then labeled with [14C]a-methyl-
glucopyranoside (AMG)—a non-metabolizable glucose
analogue specific for sodium-dependent glucose transport-
ers. After 2 h, the labeled cells were washed three times
with ice-cold PBS. Cells were then solubilized and Na-
dependent [14C]AMG uptake was quantified by measuring
radioactivity.
14. Wielert-Badt, S.; Lin, J.-T.; Lorenz, M.; Fritz, S.; Kinne,
R. K.-H. J. Med. Chem. 2000, 43, 1692.