Page 11 of 12
Journal of the American Chemical Society
68. Herrmann, W. A.; Gimeno, J.; Weichmann, J.; Ziegler,
82. Fischer, E. O.; Clough, R. L.; Besl, G.; Kreissl, F. R.
Dimethylcarbene- and Methylphenylcarbenedicarbonyl(η-
cyclopentadienyl)manganese. Angew. Chem. Int. Ed. Engl.
1976, 15 (9), 543-544.
83. Bruce, A. E.; Gamble, A. S.; Tonker, T. L.; Templeton,
J. L. Cationic phosphonium carbyne and bis(phosphonium)
carbene tungsten complexes: [Tp'(OC)2WC(PMe3)n][PF6] (n
= 1, 2). Organometallics 1987, 6 (6), 1350-1352.
84. Buss, J. A.; VanderVelde, D. G.; Agapie, T. Lewis Acid
Enhancement of Proton Induced CO2 Cleavage: Bond
Weakening and Ligand Residence Time Effects. J. Am. Chem.
Soc. 2018, 140 (32), 10121-10125.
1
2
3
4
5
6
7
8
M. L.; Balbach, B. Komplexchemie reaktiver organischer
verbindungen: XXXVII. Metallinduzierter abbau eines σ,π-
koordinierten ketens in ein π-allyl/σ-aryl/π-olefin-system.
J. Organomet. Chem. 1981, 213 (2), C26-C30.
69. Kurogi, T.; Ishida, Y.; Hatanaka, T.; Kawaguchi, H.
Reduction
of
carbon
monoxide
by
a
tetrakis(aryloxide)diniobium complex having four bridging
hydrides. Dalton Transactions 2013, 42 (21), 7510-7513.
70. Matsuo, T.; Kawaguchi, H. A Synthetic Cycle for
H2/CO Activation and Allene Synthesis Using Recyclable
Zirconium Complexes. J. Am. Chem. Soc. 2005, 127 (49),
17198-17199.
71. Morrison, E. D.; Steinmetz, G. R.; Geoffroy, G. L.;
Fultz, W. C.; Rheingold, A. L. Interconversion of methylene
and ketene ligands on a triosmium cluster. Crystal and
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
85. Kandler, H.; Bidell, W.; Jänicke, M.; Knickmeier, M.;
Veghini, D.; Berke, H. Functionalized Iron Ketene Complexes
from Carbonyl Coupling Reactions. Organometallics 1998,
17 (5), 960-971.
molecular
structure
of
the
ketene
complex
86. Black, T. H.; Farrell, J. R.; Probst, D. A.; Zotz, M. C. A
dodecacarbonyl[2(C,C)-μ-ketene]triosmium,
high-yielding,
reproducible
synthesis
of
[Os3(CO)12[η2(C,C)-μ-CH2CO]]. J. Am. Chem. Soc. 1983, 105
(12), 4104-4105.
trimethylsilylketene. Synth. Commun. 2002, 32 (13), 2083-
2088.
72. Morrison, E. D.; Steinmetz, G. R.; Geoffroy, G. L.;
Fultz, W. C.; Rheingold, A. L. Trinuclear osmium clusters as
models for intermediates in carbon monoxide reduction
chemistry. 2. Conversion of a methylene into a ketene ligand
on a triosmiumcluster face. J. Am. Chem. Soc. 1984, 106 (17),
4783-4789.
73. Straus, D. A.; Grubbs, R. H. Preparation andreaction
of metal-ketene complexes of zirconium and titanium. J. Am.
Chem. Soc. 1982, 104 (20), 5499-5500.
74. Asdar, A.; Lapinte, C.; Toupet, L. Synthesis and
electrophilic properties of neutral molybdenum formyl
complexes Mo(C5Me5)(CO)2(PR3)CHO: access to secondary
heterocarbene compounds. Organometallics 1989, 8 (11),
2708-2717.
75. Tam, W.; Lin, G.-Y.; Gladysz, J. A. Syntheses of
kinetically unstable neutral formyl complexes via
Li(C2H5)3BH and "transformylation" reactions of metal
carbonyl cations. Organometallics 1982, 1 (3), 525-529.
76. Tam, W.; Wong, W.-K.; Gladysz, J. A. Neutral metal
formyl complexes: generation, reactivity, and models for
Fischer-Tropsch catalyst intermediates. J. Am. Chem. Soc.
1979, 101 (6), 1589-1591.
77. Gibson, D. H.; Owens, K.; Mandal, S. K.; Sattich, W.
E.; Franco, J. O. Synthesis and thermolysis of neutral metal
formyl complexes of molybdenum, tungsten, manganese,
and rhenium. Organometallics 1989, 8 (2), 498-505.
78. Elowe, P. R.; West, N. M.; Labinger, J. A.; Bercaw, J. E.
Transformations of Group 7 Carbonyl Complexes: Possible
Intermediates in a Homogeneous Syngas Conversion
Scheme. Organometallics 2009, 28 (21), 6218-6227.
79. Butts, S. B.; Holt, E. M.; Strauss, S. H.; Alcock, N. W.;
Stimson, R. E.; Shriver, D. F. Kinetic and thermodynamic
control of the methyl migration (carbon monoxide
insertion) reaction by strong Lewis acids. J. Am. Chem. Soc.
1979, 101 (19), 5864-5866.
80. Richmond, T. G.; Basolo, F.; Shriver, D. F.
Bifunctional activation of coordinated carbon monoxide: a
kinetic study of Lewis acid induced alkyl migration. Inorg.
Chem. 1982, 21 (3), 1272-1273.
81. Fischer, E. O.; Frank, A. Übergangsmetall-Carbin-
Komplexe, XLIII: Reduktion einer Metall-Kohlenstoff-
Dreifachbindung. Chem. Ber. 1978, 111 (11), 3740-3744.
87. Staudaher, N. D.; Arif, A. M.; Louie, J. Synergy
between Experimental and Computational Chemistry
Reveals the Mechanism of Decomposition of Nickel–Ketene
Complexes. J. Am. Chem. Soc. 2016, 138 (42), 14083-14091.
88. Curley, J. J.; Kitiachvili, K. D.; Waterman, R.;
Hillhouse, G. L. Sequential Insertion Reactions of Carbon
Monoxide and Ethylene into the Ni−C Bond of a Cationic
Nickel(II) Alkyl Complex. Organometallics 2009, 28 (8),
2568-2571.
89. Ho, S. C. H.; Straus, D. A.; Armantrout, J.; Schaefer,
W. P.; Grubbs, R. H. Structure and reactivity of the
zirconaenolate anion[Cp2Zr(C,O-η2-OCCH2)CH3]Na•2THF.
Synthesis of homo- and heterobinuclear ketene complexes.
J. Am. Chem. Soc. 1984, 106 (7), 2210-2211.
90. Bleuel, E.; Laubender, M.; Weberndörfer, B.;
Werner, H. The First Example of Linkage-Isomeric Ketene
Metal Complexes. Angew. Chem. Int. Ed. 1999, 38 (1-2), 156-
159.
91. Grotjahn, D. B.; Lo, H. C. Fragmentation of 2-Pyridyl
Esters Gives both .2(C,O)- and 2(C,C)-Bound Ketene Ligands
on ClIr[P(i-Pr)3]2. Organometallics 1995, 14 (12), 5463-
5465.
92. Grotjahn, D. B.; Collins, L. S. B.; Wolpert, M.;
Bikzhanova, G. A.; Lo, H. C.; Combs, D.; Hubbard, J. L. First
Direct Structural Comparison of Complexes of the Same
Metal Fragment to Ketenes in Both C,C- and C,O-Bonding
Modes. J. Am. Chem. Soc. 2001, 123 (34), 8260-8270.
93. Zhao, Y.; Truhlar, D. G. The M06 suite of density
functionals
for
main
group
thermochemistry,
thermochemical kinetics, noncovalent interactions, excited
states, and transition elements: two new functionals and
systematic testing of four M06-class functionals and 12
other functionals. Theor. Chem. Acc. 2008, 120 (1), 215-241.
94. Anslyn, E. V.; Goddard, W. A. Structures and
reactivity of neutral and cationic molybdenum methylidene
complexes. Organometallics 1989, 8 (6), 1550-1558.
95. Some degree of O–borane interaction is apparently
also present in methylidene 5, as judged by parallel
experiments with BPh3 (described below), in which the 31
P
chemical shift for 5 is detected slightly upfield at 49.4 ppm
(cf. 52.1 ppm in the reaction with BEt3). No such change in
chemical shift was detected for 6 in these two reactions,
ACS Paragon Plus Environment