827
I. Tsuchimochi et al.
Letter
Synlett
tivities of natural lipases, the stereochemistries of the prod-
ucts obtained in this study were antipodes of mevastatin
and forskolin. We are therefore also investigating the ma-
nipulation of natural lipases to create mutants for the pro-
duction of enantiomers of the resulting products.18,19
(4) (a) Dinh, P. M.; Howarth, J. A.; Hudnott, A. R.; Williams, J. M. J.;
Harris, W. Tetrahedron Lett. 1996, 37, 7623. (b) Samec, J. S. M.;
Bäckvall, J. E.; Andersson, P. G.; Brandt, P. Chem. Soc. Rev. 2006,
35, 237.
(5) Engström, K.; Johnston, E. V.; Verho, O.; Gustafson, K. P. J.;
Shakeri, M.; Tai, C. W.; Bäckvall, J. E. Angew. Chem. Int. Ed. 2013,
52, 14006.
(6) (a) El-Sepelgy, O.; Alandini, N.; Rueping, M. Angew. Chem. Int.
Ed. 2016, 55, 13602; corrigendum: Angew. Chem. Int. Ed. 2017,
56, 3129. (b) El-Sepelgy, O.; Brzozowska, A.; Rueping, M. Chem-
SusChem 2017, 10, 1664. (c) Gustafson, K. P. J.; Guðmundsson,
A.; Lewis, K.; Bäckvall, J. E. Chem. Eur. J. 2017, 23, 1048. (d) Yang,
Q.; Zhang, N.; Liu, M.; Zhou, S. Tetrahedron Lett. 2017, 58, 2487.
(7) (a) Akai, S.; Tanimoto, K.; Kanao, Y.; Egi, M.; Yamamoto, T.; Kita,
Y. Angew. Chem. Int. Ed. 2006, 45, 2592. (b) Akai, S.; Hanada, R.;
Fujiwara, N.; Kita, Y.; Egi, M. Org. Lett. 2010, 12, 4900. (c) Egi, M.;
Sugiyama, K.; Saneto, M.; Hanada, R.; Kato, K.; Akai, S. Angew.
Chem. Int. Ed. 2013, 52, 3654. (d) Sugiyama, K.; Oki, Y.;
Kawanishi, S.; Kato, K.; Ikawa, T.; Egi, M.; Akai, S. Catal. Sci. Tech-
nol. 2014, 6, 5023. (e) Kawanishi, S.; Sugiyama, K.; Oki, Y.;
Ikawa, T.; Akai, S. Green Chem. 2017, 19, 411. (f) Sugiyama, K.;
Kawanishi, S.; Oki, Y.; Kamiya, M.; Hanada, R.; Egi, M.; Akai, S.
Bioorg. Med. Chem. 2018, 26, 1378. (g) Kawanishi, S.; Oki, S.;
Kundu, D.; Akai, S. Org. Lett. 2019, 21, 2978. (h) Higashio, K.;
Katsuragi, S.; Kundu, D.; Adebar, N.; Plass, C.; Kühn, F.; Gröger,
H.; Akai, S. Eur. J. Org. Chem. 2020, 1961. (i) Kühn, F.; Katsuragi,
S.; Oki, Y.; Scholz, C.; Akai, S.; Gröger, H. Chem. Commun. 2020,
56, 2885.
(8) For an example, see: Warner, M. C.; Shevchenko, G. A.; Jouda, S.;
Bogár, K.; Bäckvall, J. E. Chem. Eur. J. 2013, 19, 13859.
(9) Koszelewski, D.; Borys, F.; Brodzka, A.; Ostaszewski, R. Eur. J.
Org. Chem. 2019, 2019, 1653.
(10) Akai, S.; Tanimoto, K.; Kita, Y. Angew. Chem. Int. Ed. 2004, 43,
1407.
(11) (a) Corey, E. J.; Da Silva Jardine, P.; Mohri, T. Tetrahedron Lett.
1988, 29, 6409. (b) Corey, E. J.; Da Silva Jardine, P.; Rohloff, J. C.
J. Am. Chem. Soc. 1988, 110, 3672. (c) Corey, E. J.; Da Silva Jar-
dine, P. Tetrahedron Lett. 1989, 30, 7297.
(12) Yamada, S.; Nagashima, S.; Takaoka, Y.; Torihara, S.; Tanaka, M.;
Suemune, H.; Aso, M. J. Chem. Soc., Perkin Trans. 1 1998, 1269.
(13) The conjugated dienol 2a is prone to decompose even when
stored under argon atmosphere in a refrigerator, whereas the
unconjugated alcohol 6a is stable and no decomposition was
observed during storage in a refrigerator for more than six
months. Similarly, the silylated dienols 2b and 2c decomposed
in a refrigerator, whereas the unconjugated alcohols 6b–f were
all stable.
Funding Information
This work was financially supported by the JSPS KAKENHI
[18HO4411 (Middle Molecular Strategy) and 18H02556] and the Plat-
form Project for Supporting Drug Discovery and Life Science Research
[Basis for Supporting Innovative Drug Discovery and Life Science Re-
search (BINDS)] from AMED under grant number JP20am0101084.
J
a
p
aAn
g
e
n
M
f
coyr
e
d
Ri
c
a
lesearc
n
h
e
v
e
l
o
p
me
(
n
tJ
P
2
0
a
m
0
1
0
1
0
8
4)J
a
p
aSnocitfehPtyroer
m
oti
S
ocnife
n
(
c
e
1
8
H
0
2
5
5
6)J
a
p
SaonctihP
f
reto
y
mrotico
S
i
f
e
n
c
e
(1
8
H
O
4
4
1
1)
Acknowledgment
We thank Taiyo Kagaku Co. Ltd., for providing mesoporous silica.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orti
n
gI
n
f
orm
a
ti
o
n
S
u
p
p
orti
n
gI
n
f
orm
a
ti
o
n
References and Notes
(1) For recent reviews, see: (a) Broadwater, S. J.; Roth, S. L.; Price, K.
E.; Kobašlija, M.; McQuade, D. T. Org. Biomol. Chem. 2005, 3,
2899. (b) Hong, B.-C.; Raja, A.; Sheth, V. Synthesis 2015, 47,
3257. (c) Hayashi, Y. Chem. Sci. 2016, 7, 866. For recent exam-
ples, see: (d) Wilson, J. C.; Boyd, M. J.; Giroux, S.; Bandarage, U.
K. J. Org. Chem. 2020, 85, 12644. (e) Baumgartner, Y.; Baudoin,
O. ACS Catal. 2020, 10, 10508. (f) Muzalevskiy, V. M.; Belyaeva,
K. V.; Trofimov, B. A.; Nenajdenko, V. G. J. Org. Chem. 2020, 85,
9993. (g) Schwertz, G.; Zanetti, A.; De Oliveira, M. N.;
Fernandez, M. A. G.; Amara, Z.; Cossy, J. J. Org. Chem. 2020, 85,
9607. (h) Devlin, R.; Jones, D. J.; McGlacken, G. P. Org. Lett. 2020,
22, 5223. (i) Nguyen, T. K.; Titov, G. D.; Khoroshilova, O. V.;
Kinzhalov, M. A.; Rostovskii, N. V. Org. Biomol. Chem. 2020, 18,
4971. (j) Moreira, N. M.; Martelli, L. S. R.; de Julio, K. I. R.;
Zukerman-Schpector, J.; Opatz, T.; Corrêa, A. G. Eur. J. Org. Chem.
2020, 4563. (k) Bernardi, E.; Colombo, L.; De Lorenzi, E.;
Carraro, M.; Serra, M. Eur. J. Org. Chem. 2020, 3568. (l) Rokade, B.
V.; Guiry, P. J. J. Org. Chem. 2020, 85, 6172.
(2) For recent reviews, see: (a) Akai, S. Chem. Lett. 2014, 43, 746.
(b) de Miranda, A. S.; Miranda, L. S. M.; de Souza, R. O. M. A. Bio-
technol. Adv. 2015, 33, 372. (c) Verho, O.; Bäckvall, J. E. J. Am.
Chem. Soc. 2015, 137, 3996. (d) Takizawa, S.; Gröger, H.; Sasai, H.
Chem. Eur. J. 2015, 21, 8992. (e) Seddigi, Z. S.; Malik, M. S.;
Ahmed, S. A.; Babalghith, A. O.; Kamal, A. Coord. Chem. Rev.
2017, 348, 54. (f) Akai, S. In Future Directions in Biocatalysis, 2nd
ed.; Matsuda, T., Ed.; Elsevier: Amsterdam, 2017, Chap. 16, 337.
(3) (a) Martín-Matute, B.; Edin, M.; Bogár, K.; Bäckvall, J.-E. Angew.
Chem. Int. Ed. 2004, 43, 6535. (b) Choi, J. H.; Choi, Y. K.; Kim, Y.
H.; Park, E. S.; Kim, E. J.; Kim, M. J.; Park, J. J. Org. Chem. 2004, 69,
1972. (c) Manzini, S.; Urbina-Blanco, C. A.; Poater, A.; Slawin, A.
M. Z.; Cavallo, L.; Nolan, S. P. Angew. Chem. Int. Ed. 2012, 51,
1042. (d) Yun, I.; Park, J. Y.; Park, J.; Kim, M.-J. J. Org. Chem 2019,
84, 16293.
(14) Because the lipase-catalyzed KR of (±)-2a proceeded with high
enantioselectivity in acetone, CH2Cl2, and acetonitrile in our
previous study,10 these solvents were chosen for a preliminary
study of the migration to find suitable conditions for the DKR.
(15) Although the results of KR of (±)-2a in CH2Cl2 fluctuated, we
found that the addition of MS4Å under the KR conditions dra-
matically improved their reproducibility. We are now investi-
gating the effect of MS4Å.
(16) Chen, C.-S.; Fujimoto, Y.; Girdaukas, G.; Sih, C. J. J. Am. Chem. Soc.
1982, 104, 7294.
(17) Ethyl (2aS,3R,4S,8aR,8bS)-2-Oxo-4-(trimethylsilyl)-2a,3,4,6,7,
8,8a,8b-octahydro-2H-naphtho[1,8-bc]furan-3-carboxylate
(4bA); Typical Procedure (Method I in Scheme 4)
To a solution of (±)-6b (20 mg, 0.10 mmol) in CH2Cl2 (2.0 mL) at
rt were added 7A (43 mg, 0.20 mmol), MS4Å (40 mg), immobi-
lized CAL-B (60 mg) and O=V(OSiPh3)3 (8.9 mg, 0.010 mmol).
© 2021. Thieme. All rights reserved. Synlett 2021, 32, 822–828