Published on Web 03/14/2003
A Highly Enantioselective Phosphabicyclooctane Catalyst for
the Kinetic Resolution of Benzylic Alcohols
Edwin Vedejs*,† and Olafs Daugulis‡
Contribution from the Chemistry Department, UniVersity of Wisconsin,
Madison, Wisconsin 53706, and Department of Chemistry,
UniVersity of Michigan, Ann Arbor, Michigan 48109
Received September 30, 2002; E-mail: edved@umich.edu
Abstract: A new class of chiral phosphines belonging to the P-aryl-2-phosphabicyclo[3.3.0]octane family
(PBO) has been prepared by enantioselective synthesis starting from lactate esters and 2,2-dimethylcy-
clopentanone enolate 5. A selective enolate alkylation method has been developed for preparation of 9
and 10 using a chelating ester substituent in the triflate alkylating agent 11. Subsequent conversion to the
PBO catalysts 2 and 39 relies on a diastereoselective cyclization from the cyclic sulfate 17 and LiPHAr to
afford the more hindered endo-aryl phosphines. These phosphines function as efficient catalysts for the
kinetic resolutions of aryl alkyl carbinols by benzoylation (16, 21, 22) or iso-butyroylation in the case of the
less hindered aryl alkyl carbinol substrates. With o-substituted aryl alkyl carbinols, the enantioselectivities
exceed 100, and s ) 380 ( 10 has been demonstrated in the case of methyl mesityl carbinol. The PBO-
catalyzed acylations probably involve a P-acylphosphonium carboxylate intermediate and a tightly ion paired
transition state.
In 1996, we reported the first examples of enantioselective
acyl transfer reactions catalyzed by a chiral phosphine. These
experiments demonstrated that 1-phenyl-trans-2,5-dimethylphos-
pholane activates m-chlorobenzoic anhydride for the chloroben-
zoylation of alcohols with significant enantioselectivity (s )
other hand, bicyclic derivatives based on the 2-phosphabicyclo-
[3.3.0]octane (PBO) skeleton proved to be remarkably more
reactive even though they are more hindered than their mono-
cyclic analogues.7-10 The phosphine-catalyzed acylations in-
volve P-acyl phosphonium carboxylate intermediates,11 and
the high reactivity of 1 appears to be due to a preference for
P-phenyl rotamers that allow easy access to the unshared
electron pair at phosphorus.
The gem-dimethyl catalyst 1 was exceptionally promising in
terms of reactivity and also gave encouraging enantioselectivity
results in acylations, but the racemic catalyst-borane complex
had to be laboriously separated into enantiomers by HPLC.10
Clearly, an enantioselective synthesis was needed before ex-
tensive effort to optimize variables would be worthwhile. Modi-
fications of the scheme developed for preparation of 1 from
1,1-dimethylcyclopentanone were therefore considered that
k
FAST/kSLOW ) 13-15).1 There had been many prior attempts
to develop chiral nucleophilic acylation catalysts,2 but this was
the first case where a nonenzymatic catalyst was shown to react
with s > 10.3 However, the reaction was very slow, so a search
for more reactive catalysts was initiated. While our study was
in progress, reports from other groups began to appear describing
chiral nitrogen nucleophiles that have reached impressive levels
of enantioselectivity.4,5
Between 1996 and 1999, work in our laboratory encountered
a variety of mono- and disubstituted phospholanes that were
not significantly better than the original lead structure.6 On the
(5) (a) Ruble, J. C.; Latham, H. A.; Fu, G. C. J. Am. Chem. Soc. 1997, 119,
1492. (b) Ruble, J. C.; Tweddell, J.; Fu, G. C. J. Org. Chem. 1998, 63,
2794. Bellemin-Laponnaz, S.; Tweddell, J.; Ruble, J. C.; Breitling, F. M.;
Fu, G. C. Chem. Commun. (Cambridge) 2000, 1009. (c) Kawabata, T.;
Nagato, M.; Takasu, K.; Fuji, K. J. Am. Chem. Soc. 1997, 119, 3169. (d)
Spivey, A. C.; Fekner, T.; Spey, S. E. J. Org. Chem. 2000, 65, 3154. Spivey,
A. C.; Maddaford, A.; Fekner, T.; Redgrave, A. J.; Frampton, C. S. J. Chem.
Soc., Perkin Trans. 1 2000, 3460. (e) Sano, T.; Miyata, H.; Oriyama, T.
Enantiomer 2000, 5, 119. Sano, T.; Imai, K.; Ohashi, K.; Oriyama, T. Chem.
Lett. 1999, 265. Oriyama, T.; Hori, Y.; Imai, K.; Sasaki, R. Tetrahedron
Lett. 1996, 37, 8543. (f) Jarvo, E. R.; Copeland, G. T.; Papaioannou, N.;
Bonitatebus, P. J., Jr.; Miller, S. J. J. Am. Chem. Soc. 1999, 121, 11638.
Copeland, G. T.; Jarvo, E. R.; Miller, S. J. J. Org. Chem. 1998, 63, 6784.
(6) Vedejs, E.; Daugulis, O. LatVian J. Chem. 1999, 1, 31.
† University of Michigan.
‡ University of Wisconsin.
(1) Vedejs, E.; Daugulis, O.; Diver, S. T. J. Org. Chem. 1996, 61, 430.
(2) Wegler, R. Liebigs Ann. Chem. 1932, 498, 62. Wegler, R.; Ru¨ber, A. Chem.
Ber. 1935, 68, 1055. Bird, C. W. Tetrahedron 1962, 18, 1. Weidmann, R.;
Horeau, A. Bull. Soc. Chim. Fr. 1967, 117. Stegman, W.; Uebelhart, P.;
Heimgartner, H.; Schmid, H. Tetrahedron Lett. 1978, 19, 3091. Mukaiyama,
T.; Tomioka, I.; Shimizu, M. Chem. Lett. 1984, 49. Ichikawa, J.; Asami,
M.; Mukaiyama, T. Chem. Lett. 1984, 949. Duhamel, L.; Herman, T.
Tetrahedron Lett. 1985, 26, 3099. Weidert, P. J.; Geyer, E.; Horner, L.
Liebigs Ann. Chem. 1989, 533. Potapov, V. M.; Dem’yanovich, V. M.;
Klebnikov, V. A.; Korovina, T. G. Zh. Org. Khim. 1986, 22, 1218 (1095
Engl). Evans, D. A.; Anderson, J. C.; Taylor, M. K. Tetrahedron Lett. 1993,
34, 5563. Ishihara, K.; Kubota, M.; Yamamoto, H. Synlett 1994, 611.
(3) Reviews of enzyme-catalyzed acyl transfer: Sih, C. J.; Wu, S.-H. Top.
Stereochem. 1989, 19, 63. Chen, C.-S.; Sih, C. J. Angew. Chem., Int. Ed.
Engl. 1989, 28, 695. Klibanov, A. M. Acc. Chem. Res. 1990, 23, 114.
Roberts, S. M. Chimia 1993, 47, 85.
(7) Preliminary communication: Vedejs, E.; Daugulis, O. J. Am. Chem. Soc.
1999, 121, 5813.
(8) Vedejs, E.; Daugulis, O.; MacKay, J. A.; Rozners, E. Synlett 2001, 1499.
(9) (a) Vedejs, E.; MacKay, J. A. Org. Lett. 2001, 3, 535. (b) Vedejs, E.;
Rozners, E. J. Am. Chem. Soc. 2001, 123, 2428.
(10) Vedejs, E.; Daugulis, O.; Harper, L. A.; MacKay, J. A.; Powell, D. R. J.
Org. Chem. 2003, 68, in press.
(11) Vedejs, E.; Diver, S. T. J. Am. Chem. Soc. 1993, 115, 3358.
(4) Reviews: Jarvo, E. R.; Miller, S. J. Tetrahedron 2002, 58, 2481. Spivey,
A. C.; Maddaford, A.; Redgrave, A. J. Org. Prep. Proced. Int. 2000, 32,
331.
9
4166
J. AM. CHEM. SOC. 2003, 125, 4166-4173
10.1021/ja021224f CCC: $25.00 © 2003 American Chemical Society