Angewandte
Chemie
monosaccharide or disaccharide moiety to form analogues of
tobramycin. The SPR studies of the interactions of these
analogues with certain RNA sequences show that new
aminoglycosides can be created to target RNA in
a
sequence-selective manner. Workis in progress to further
study the interactions of selected compounds and RNAs to
understand the origin of selectivity and to design better RNA-
binding molecules as inhibitors of translational processes in
cell-based systems.
Received: May 5, 2004
Revised: June 15, 2004
Keywords: carbohydrates · drug design · glycosylation ·
.
RNA recognition · surface plasmon resonance
[1] a) D. Ecker, R. H. Griffey, Drug Discovery Today 1999, 4, 420;
b) S. J. Sucheck, C.-H. Wong, Curr. Opin. Chem. Biol. 2000, 4,
678; c) T. Hermann, Angew. Chem. 2000, 112, 1962; Angew.
Chem. Int. Ed. 2000, 39, 1890; d) J. Gallego, G. Varani, Acc.
Chem. Res. 2001, 34, 836.
[2] a) N. Ban, P. Nissen, J. Hansen, P. B. Moore, T. A. Steitz, Science
2000, 289, 905; b) D. Moazed, H. F. Noller, Nature 1987, 327, 389;
c) F. Schlünzen, R. Zarivach, J. Harms, A. Bashan, A. Tocilj, R.
Albrecht, A. Yonath, F. Franceschi, Nature 2001, 413, 814; d) D.
Fourmy, M. I. Recht, S. C. Blan-
Figure 5. RNA sequences used for the SPR binding assay. All RNA
sequences were 5’-biotin-labeled and were heated to 808C for 2 min
and allowed to cool down slowly to refold into the most stable confor-
mations before immobilization onto a streptavidin-coated sensor chip.
SPR experiments were performed according to the procedure reported
previously.[17]
Table 1: Kd values [mm] for selected compounds screened against different RNAs.[a,b]
chard, J. D. Puglisi, Science 1996,
274, 1367; e) Q. Vicens, E. Westhof,
ChemBioChem 2003, 4, 1018; f) Y.
Tor, ChemBioChem 2003, 4, 998.
[3] a) M. Howard, R. A. Frizzell, D. M.
Bedwell, Nat. Med. 1996, 2, 467;
b) G. Werstuck, M. R. Green, Sci-
ence 1998, 282, 296; c) W. Winkler,
A. Nahvi, R. R. Breaker, Nature
2002, 419, 952.
[4] a) M. L. Zapp, S. Stern, M. R.
Green, Cell 1993, 74, 969; b) S.
Wang, P. W. Huber, M. Cui, A. W.
Czarnik, H.-Y Mei, Biochemistry
1998, 37, 5549; c) S. J. Sucheck,
W. A. Greenberg, T. J. Tolbert, C.-
H. Wong, Angew. Chem. 2000, 112,
1122; Angew. Chem. Int. Ed. 2000,
39, 1080; d) U. von Ahsen, J.
Davies, R. Schroeder, Nature
1991, 353, 368.
Compound
16S-
AS
EcTG
HCV2b
HCV3d
HIV-
FSS
HIV-
PAS
hBcr-
Abl
hTSulT
1
3
4
2.1
0.2
1.3
5.9
1.7
4.3
3
1.8
3.8
6.6
2.6
4.6
3.6
2.3
3.7
19
2.8
12
2.7
2.9
4.3
12
2.2
2.9
0.26
6.8
0.7
0.25
2.7
–
2.3
2.3
4
3.3
0.53
2
0.64
1.6
2.7
4.7
1.2
3.4
0.32
1
0.71
4.6
1.7
2
14
2
1.3
2
10
3.2
3.5
0.75
3.8
3.2
0.7
5
65
0.3
37
15
19
1.1
0.83
6.8
5.1
3
5
4
14
1.2
7
32
33
34
35
36
37
38
39
40
41
42
43
11
25
1.8
0.62
4.9
5.3
14
1
0.42
8
3
1.6
9.4
8.1
–
52
14
9.6
13
9.4
3.9
5.1
0.42
1.8
9.4
0.28
12
2.6
3.8
3.5
3.1
9.5
4
8.5
6.4
3.5
14
0.67
2.5
1.7
7.6
1.6
4.5
1
6
[a] RNA abbreviations used: 16S-AS: Bacterial 16S A-site; EcTG: E. coli. transglycosidase mRNA;
HCV2b: HCV IRES domain IIb; HCV3d: HCV IRES domain IIId; HIV-FSS: HIV frameshift signal; HIV-
PAS: HIV protease active site mRNA; Bcr-Abl: human oncogenic Bcr-Abl mRNA; hTSulT: human
tyrosine sulfotransferase mRNA; [b] Errors of Kd values range from Æ5% to Æ29%.
[5] a) D. Fourmy, S. M. I. Recht, J. D.
Puglisi, J. Mol. Biol. 1998, 277, 347;
b) S. Yoshizawa, D. Fourmy, J. D.
Puglisi, EMBO J. 1998, 17, 6437;
c) A. P. Carter, W. M. J. Clemons,
D. E. Brodersen, R. J. Morgan-Warren, B. T. Wimberly, V.
Ramakrishnan, Nature 2000, 407, 340; d) Q. Vicens, E. Westhof,
Structure 2001, 9, 647; e) Q. Vicens, E. Westhof, Chem. Biol.
2002, 9, 747.
25-fold); 37 bound better to the HCV IRES IIb domain
(0.28 mm, 2.5 to > 100-fold); 39 selectively bound the E. coli.
transglycosidase mRNA (0.42 mm, 4–23-fold); 41 exhibited a
high affinity to the HCV IRES IIId domain and the E. coli.
transglycosidase mRNA (0.53 mm and 0.67 mm, 2–16-fold).
The charges of the aminoglycosides tested range from + 5 to
+ 7. However, upon comparing the Kd values and the number
of charges, no direct correlations were found.
[6] C.-H. Wong, M. Hendrix, E. S. Priestley, W. A. Greenberg,
Chem. Biol. 1998, 5, 397.
[7] a) S. R. Kirk, N. W. Luedtke, Y. Tor, J. Am. Chem. Soc. 2000, 122,
980; b) S. J. Sucheck, A. L. Wong, K. M. Koeller, D. D. Boehr,
K.-a. Draker, P. S. Sears, G. D. Wright, C.-H. Wong, J. Am.
Chem. Soc. 2000, 122, 5230; c) J. Haddad, L. P. Kotra, B. Llano-
Sotelo, C. Kim, E. F. Azucena, Jr., M. Liu, S. B. Vakulenko, C. S.
Chow, S. Mobashery, J. Am. Chem. Soc. 2002, 124, 3229; d) S.
In conclusion, we have developed an efficient method to
replace a monosaccharide unit of tobramycin with another
Angew. Chem. Int. Ed. 2004, 43, 6496 –6500
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 6499