A R T I C L E S
Baker-Glenn et al.
Scheme 1. Aldolase Antibody Route to Hetero Diels-Alder
pyranones and tetrahydropyranones based on the use of aldolase
I antibody 84G3 or antibody 93F3. These antibodies were raised
by reactive immunization against a hapten featuring both a
sulfone and a 1,3-diketone functionality.7 The key step involves
the kinetic resolution of structurally diverse enone-derived aldol
products with aldolase antibody 84G3 or 93F3, followed by the
cyclization of these various enantioenriched aldol products into
one or the other class of hetero Diels-Alder adducts. This
approach allows easy access to numerous adducts, including
products otherwise derived from the combination of less
nucleophilic dienes with unactivated aldehydes. We present
herein full details of our studies, including an investigation of
the scope and limitation of the aldolase I antibody route to
various enantioenriched aldol products derived from enones and
a discussion of how the ring-closure process controls the degree
of oxidation of the cyclized product, leading either to enantio-
enriched tetrahydropyranones or dihydropyranones.
Adducts
Specifically, we hypothesized that aldolase I antibodies are
potential catalysts for the preparation of HDA adducts of
carbonyl compounds, according to a stepwise pathway where
an antibody-mediated aldol kinetic resolution will deliver
enantioenriched aldol products and a ring closure on the
â-carbon of the hydroxyenone would complete the cyclo-
condensation. This hypothesis is based on the mechanistic
similarities between the first step of a stepwise hetero Diels-
Alder reaction of carbonyl compounds and an aldolization
process. In this strategy, the presence of a leaving group such
as the methoxy group on the sp2-hydridized carbon positioned
â to the carbonyl in the aldol products will lead upon cyclization
to the corresponding dihydropyranones. In the absence of this
group, the enantioenriched tetrahydropyranones will be obtained
instead (Scheme 1).
Results and Discussion
Two mechanistic pathways can operate for Lewis acid-
mediated hetero Diels-Alder reactions of Danishefsky-type
carbodienes with carbonyl compounds.8 These two pathways
are a concerted nonsynchronous mechanism by analogy with
the catalyzed all-carbon Diels-Alder reaction or the formation
of a Mukaiyama-aldol intermediate, followed by an intra-
molecular Michael-type addition. To a great extent, the mech-
anism that operates is a function of the catalyst and solvent
system along with the structural features of the reactants.
Preparation of Enantioenriched â-Hydroxyenones. To test
this hypothesis, we investigated the capacity of aldolase I
antibodies 84G3 and 93F3 to deliver enantioenriched aldol
products derived from R,â-unsaturated methyl ketones and
various aldehydes (Table 1). We first undertook preliminary
work on selected synthetic forward aldol reactions in the
presence of these aldolase I antibodies. These experiments
revealed that only traces or no aldol products were formed
following extended incubation with the antibody.9 We therefore
turned our attention to the antibody-catalyzed kinetic resolution
of aldol product (()-1a, and we found that the treatment of
aldol (()-1a with aldolase antibody 84G3 or antibody 93F3
resulted in the rapid formation of anisaldehyde. Gratifyingly,
the retro-aldolization did not go beyond 50% conversion,
auguring an efficient kinetic resolution process (entry 1). Given
our encouraging results in the resolution of aldol (()-1a, we
set out to study the range of â-hydroxyenones that could be
resolved using antibodies 84G3 and 93F3. We focused our study
on aldol products derived from the combination of seven
representative enones and six aldehydes. In total, 12 racemic
aldols were prepared in one step from the corresponding donor
enones and acceptor aldehydes. Indeed, the direct aldol reaction
between various aldehydes and lithium enolates was successful
for the preparation of all racemic aldols (()-1a-l with excellent
chemical yields.10 The racemic aldols (()-1a-l were then
subjected to kinetic resolution with antibody 84G3 and/or 93F3
in PBS at pH 7.4 and at room temperature. Analysis by high-
performance liquid chromatography (HPLC) indicated that a
reaction is taking place with most aldol products. Conversion
(3) (a) Laschat, S. Angew. Chem., Int. Ed. Engl. 1996, 35, 289. (b) Pohnert,
G. ChemBioChem 2001, 2, 873. (c) Tremblay, M. R.; Dickerson, T. J.;
Janda, K. D. AdV. Synth. Catal. 2001, 343, 577. (d) Ose, T.; Watanabe,
K.; Mie, T.; Honma, M.; Watanabe, H.; Yao, M.; Oikawa, H.; Tanaka, I.
Nature 2003, 422, 185. (e) Stocking, E. M.; Williams, R. M. Angew. Chem.,
Int. Ed. 2003, 42, 3078.
(4) (a) Hilvert, D.; Hill, K. W.; Nared, K. D.; Auditor, M. T. M. J. Am. Chem.
Soc. 1989, 111, 9261. (b) Xu, J. A.; Deng, Q. L.; Chen, J. G.; Houk, K.
N.; Bartek, J.; Hilvert, D.; Wilson, I. A. Science 1999, 286, 2345. (c) Chen,
J.; Deng, Q.; Wang, R.; Houk, K. N.; Hilvert, D. ChemBioChem 2000, 1,
255. (d) Heine, A.; Stura, E. A.; Yli-Kauhaluoma, J. T.; Gao, C. S.; Deng,
Q. L.; Beno, B. R.; Houk, K. N.; Janda, K. D.; Wilson, I. A. Science 1998,
279, 1934. (e) Gouverneur, V. E.; Houk, K. N.; de Pascual-Teresa, B.;
Beno, B.; Janda, K. D.; Lerner, R. A. Science 1993, 262, 204. (f) Braisted,
A. C.; Schultz, P. G. J. Am. Chem. Soc. 1990, 112, 7430. (g) Romesberg,
F. E.; Spiller, B.; Schultz, P. G. Science 1998, 279, 1929.
(5) (a) Tarasow, T. M.; Eaton, B. E. Cell. Mol. Life Sci. 1999, 55, 1463. (b)
Tarasow, T. M.; Tarasow, S. L.; Tu, C.; Kellogg, E.; Eaton, B. E. J. Am.
Chem. Soc. 1999, 121, 3614. (c) Tarasow, T. M.; Eaton, B. E.; Biopolymers
1998, 48, 29.
(6) Hu, Y. J.; Ji, Y. Y.; Wu, Y. L.; Yang, B. H.; Yeh, M. Bioorg. Med. Chem.
Lett. 1997, 7, 1601.
(7) (a) Wagner, J.; Lerner, R. A.; Barbas, C. F., III. Science 1995, 270, 1797.
(b) Bjornestedt, R.; Zhong, G.; Lerner, R. A.; Barbas, C. F., III. J. Am.
Chem. Soc. 1996, 118, 11720. (c) Zhong, G.; Hoffmann, T.; Lerner, R. A.;
Danishefsky, S.; Barbas, C. F., III. J. Am. Chem. Soc. 1997, 119, 8131. (d)
Barbas, C. F., III; Heine, A.; Zhong, G.; Hoffman, T.; Gramatikova, S.;
Bjornestedt, R.; List, B.; Anderson, J.; Stura, E. A.; Wilson, I. A.; Lerner,
R. A. Science 1997, 278, 2085. (e) Hoffman, T.; Zhong, G.; List, B.; Shabat,
D.; Anderson, J.; Gramatikova, S.; Lerner, R. A.; Barbas, C. F., III. J. Am.
Chem. Soc. 1998, 120, 2768. (f) List, B.; Shabat, D.; Zhong, D.; Turner, J.
M.; Li, A.; Bui, T.; Anderson, J.; Lerner, R. A.; Barbas, C. F., III. J. Am.
Chem. Soc. 1999, 121, 7283. (g) Zhong, D.; Lerner, R. A.; Barbas, C. F.,
III. Angew. Chem., Int. Ed. 1999, 111, 3957. (h) Sinha, S. C.; Sun, J.;
Miller, G. P.; Wartmann, M.; Lerner, R. A. Chem.-Eur. J. 2001, 7, 1691.
(i) Sinha, S. C.; Sun, J.; Miller, G. P.; Barbas, C. F., III; Lerner, R. A.
Org. Lett. 1999, 10, 1623. (j) Zhong, D.; Shabat, D.; List, B.; Anderson,
J.; Sinha, S. C.; Lerner, R. A.; Barbas, C. F., III. Angew. Chem., Int. Ed.
1998, 37, 2481. (k) Maggiotti, V.; Resmini, M.; Gouverneur, V. Angew.
Chem., Int. Ed. 2002, 41, 1012. (l) Baker-Glenn, C.; Ancliff, R.;
Gouverneur, V. Tetrahedron 2004, 60, 7607.
(8) (a) Danishefsky, S. J.; Larson, E.; Askin, D.; Kato, N. J. Am. Chem. Soc.
1985, 107, 1246. (b) Roberson, M.; Jepsen, A. S.; Jorgensen, K. A.
Tetrahedron 2001, 57, 907. (c) Corey, E. J.; Cywin, C. L.; Roper, T. D.
Tetrahedron Lett. 1992, 33, 6907. (d) Schaus, S. E.; Brånalt, J.; Jacobsen,
E. N. J. Org. Chem. 1998, 63, 403. (e) Mujica, M. T.; Afonso, M. M.;
Galindo, A.; Palenzuela, J. A. Tetrahedron 1996, 52, 2167. (f) Ghosh, A.
K.; Mathivanan, P.; Cappiello, J.; Krishnan, K. Tetrahedron: Asymmetry
1996, 7, 2165. (g) Qian, C.; Wang, L. Tetrahedron Lett. 2000, 41, 2203.
(9) A mixture of para-nitrobenzaldehyde and a large excess (700 equiv) of
MVK, penten-3-one, or 4-methylbutanone was incubated in the presence
of 10 mol % of ab38C2 or ab84G3. No trace of the desired aldol product
was observed by HPLC upon extended reaction time when MVK or penten-
3-one were used as donors. Only traces of aldol product could be detected
for the reaction of para-nitrobenzaldehyde with 4-methylbutanone in the
presence of ab84G3.
(10) See Supporting Information for full experimental details.
9
1482 J. AM. CHEM. SOC. VOL. 127, NO. 5, 2005