Published on Web 12/06/2005
Controlling Molecular Crystal Polymorphism with
Self-Assembled Monolayer Templates
Rupa Hiremath, Joseph A. Basile, Stephen W. Varney, and Jennifer A. Swift*
Contribution from the Department of Chemistry, Georgetown UniVersity,
37th and “O” Streets NW, Washington, D.C. 20057-1227
Received September 27, 2005; E-mail: jas2@georgetown.edu
Abstract: The control of crystal polymorphism is a long-standing issue in solid-state chemistry, which has
many practical implications for a variety of commercial applications. At least four different crystalline forms
of 1,3-bis(m-nitrophenyl) urea (MNPU), a classic molecular crystal system, are known to crystallize from
solution in various concomitant combinations. Herein we demonstrate that the introduction of gold-thiol
self-assembled monolayers (SAMs) of substituted 4′-X-mercaptobiphenyls (X ) H, I, and Br) into the
crystallization solution can serve as an effective means to selectively template the nucleation and growth
of R-, â-, and γ-MNPU phases, respectively. Polymorph control in the presence of SAM surfaces persists
under a variety of solution conditions and consistently results in crystalline materials with high phase purity.
The observed selectivity is rationalized on the basis of long-range two-dimensional geometric lattice matching
and local complementary chemical interactions at the SAM/crystal interfaces.
crystallization in confined spaces, such as capillaries6,7 and
micropores,8 or in the presence of molecular9,10 or polymeric11-13
Introduction
One of the long-standing challenges in organic solid-state
chemistry is the ability to predict and control the occurrence of
polymorphism, the ability of a molecule to crystallize in more
than one packing arrangement.1 This has broad practical
implications for a number of industries, ranging from pharma-
ceuticals (drugs) to textiles (dyes and pigments) to defense
(energetic materials). While in principle it may be possible to
experimentally define the occurrence domain(s)2 under which
a particular form of a molecular solid crystallizes, establishing
such conditions in practice can be far more complicated than
simply specifying a narrow range of solvents, temperatures, and
cooling/evaporation rates. There are also a number of examples
in which two or more polymorphs form concomitantly under
essentially the same crystallization conditions.3 In part, this may
be a consequence of the fact that crystallization begins with
the nucleation stage, usually considered to be a heterogeneous
process, and the total contents of any given solution can never
be completely known.
additives. Polymorph control has also been achieved by epitaxial
nucleation and growth on single-crystal substrates.14,15
Other types of ordered 2D surfaces, such as Langmuir films
and self-assembled monolayers (SAMs), have been used to
selectively nucleate and grow a number of different inorganic
crystals,16-22 though their use as templates for molecular crystals
has been somewhat more limited.23-27 In such studies, the
templating function is generally attributed to strong ionic or
hydrogen-bonding interactions formed across the monolayer/
crystal interface. In our own recent work, we have shown that
(6) Chyall, L. J.; Tower, J. M.; Coates, D. A.; Houston, T. L.; Childs, S. L.
Cryst. Growth Des. 2002, 2, 505-510.
(7) Hilden, J. L.; Reyes, C. E.; Kelm, M. J.; Tan, J. S.; Stowell, J. G.; Morris,
K. R. Cryst. Growth Des. 2003, 3, 921-926.
(8) Ha, J.-M.; Wolf, J. H.; Hillmyer, M. A.; Ward, M. D. J. Am. Chem. Soc.
2004, 126, 3382-3383.
(9) Weissbuch, I.; Popovitz-Biro, R.; Lahav, M.; Leiserowitz, L. Acta Crys-
tallogr. 1995, B51, 115-148.
(10) Davey, R. J.; Blagden, N.; Potts, G. D.; Docherty, R. J. Am. Chem. Soc.
1997, 119, 1767-1772.
(11) Staab, E.; Addadi, L.; Leiserowitz, L.; Lahav, M. AdV. Mater. 1990, 2,
40-43.
While the conventional methods of polymorph screening by
slurry conversion and/or varying solvent, temperature, and
supersaturation have been very much accelerated by the use of
high throughput screening methods,4,5 a variety of complemen-
tary approaches to controlling and/or discovering new poly-
morphs have also been pursued in recent years. These include
(12) Lang, M.; Grzesiak, A. L.; Matzger, A. J. J. Am. Chem. Soc. 2002, 124,
14834-14835.
(13) Price, C. P.; Grzesiak, A. L.; Matzger, A. J. J. Am. Chem. Soc. 2005, 127,
5512-5517.
(14) Bonafede, S. J.; Ward, M. D. J. Am. Chem. Soc. 1995, 117, 7853-7861.
(15) Mitchell, C. A.; Yu, L.; Ward, M. D. J. Am. Chem. Soc. 2001, 123, 10830-
10839.
(16) Heywood, B. R.; Mann, S. AdV. Mater. 1994, 16, 9-20.
(17) Popovitz-Biro, R.; Lahav, M.; Leiserowitz, L. J. Am. Chem. Soc. 1991,
113, 8943-8944.
(1) Bernstein, J. Polymorphism in Molecular Crystals; Oxford University
Press: New York, 2002.
(2) Sato, K.; Boistelle, R. J. Cryst. Growth 1984, 66, 441-450.
(3) Bernstein, J.; Davey, R. J.; Henck, J.-O. Angew. Chem., Int. Ed. 1999, 38,
3440-3461.
(4) Peterson, M. L.; Morissette, S. L.; McNulty, C.; Goldsweig, A.; Shaw, P.;
LeQuesne, M.; Monagle, J.; Encina, N.; Marchionna, J.; Johnson, A.; Cima,
M. J.; Almarsson, O. J. Am. Chem. Soc. 2002, 124, 10858-10959.
(5) Morissette, S. L.; Soukasene, S.; Levinson, D. A.; Cima, M., J.; Almarsson,
O. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 2180-2184.
(18) Aizenberg, J.; Black, A. J.; Whitesides, G. M. J. Am. Chem. Soc. 1999,
121, 4500-4509.
(19) Kuther, J.; Seshadri, R.; Knoll, W.; Tremel, W. J. Mater. Chem. 1998, 8,
641-650.
(20) Travaille, A. M.; Kaptjin, L.; Verwer, P.; Hulsken, B.; Elemans, J. A. A.
W.; Nolte, R. J. M.; van Kempen, H. J. Am. Chem. Soc. 2003, 125, 11571-
11577.
(21) Bandyopadhyay, K.; Vijayamohanan, K. Langmuir 1998, 14, 6924-6929.
(22) Meldrum, F. C.; Flath, J.; Knoll, W. Langmuir 1997, 13, 2033-2049.
9
10.1021/ja0565119 CCC: $30.25 © 2005 American Chemical Society
J. AM. CHEM. SOC. 2005, 127, 18321-18327
18321