528
S. Mangelinckx et al. / Tetrahedron Letters 46 (2005) 525–529
1) 1N NaOH
Br
Br
Br
1 equiv. (C6H5)3P
MeOH/ rt/ 3h
MeO
MeO
MeO
MeO
MeO
MeO
CO2Me
CO2H
CO2
2) H3O+
4 equiv. Et3N
THF/ rt/ 17h
P(C6H5)3
N3
N3
N
19
24 (99%)
25
1) 2.1 equiv. NaOH
THF/ H2O 1/1
∆ / 4h
1) 2.1 equiv. NaOH
THF/ H2O 1/1
∆ / 4h
2) 1 equiv. ClCO2Bn
1.1 equiv. Na2CO3
CH2Cl2, H2O 1/1
rt/ 3h
2) H3O+
MeO OMe
MeO OMe
2 equiv. LiAlH4
CO2H
THF/∆/ 17h
N
H
N
H
OH
28 (51%)
26 (41%)
MeO OMe
1 equiv. ClCO2Bn
1 equiv. NaHCO3
H2O/ rt/ 1h
CO2H
N
CO2Bn
27 (73%)
MeO OMe
N
OH
CO2Bn
29 (64%)
Scheme 5.
4. (a) Kobayashi, J.; Cheng, J.; Ishibashi, M.; Wa¨lchli, M.
R.; Yamamura, S.; Ohizumi, Y. J. Chem. Soc., Perkin
Trans. 1 1991, 1135–1137; (b) Takikawa, H.; Maeda, T.;
Seki, M.; Koshino, H.; Mori, K. J. Chem. Soc., Perkin
Trans. 1 1997, 97–111; (c) Knapp, S.; Dong, Y. Tetrahe-
dron Lett. 1997, 38, 3813–3816.
MeO OMe
MeO2C
N
H
CO2H
CO2H
rt
N
H
26
30
5. For a review on the synthesis of azetidin-3-ols and of other
azetidines, see: (a) Cromwell, N. H.; Phillips, B. Chem.
Rev. 1979, 79, 331–358; (b) De Kimpe, N. Azetidines,
Azetines and Azetes: Monocyclic. In Three and Four-
Membered Rings, with all Fused Systems Containing Four-
Membered Rings; Padwa, A., Katrizky, A. R., Rees,
C. W., Scriven, E. F. V., Eds.; Comprehensive Hetero-
cyclic Chemistry II; Elsevier: Oxford, UK, 1996; Vol. 1B,
Chapter 1.18, pp 507–589.
6. (a) Rodebaugh, R. M.; Cromwell, N. H. J. Heterocycl.
Chem. 1968, 5, 309–311; (b) Rodebaugh, R. M.; Crom-
well, N. H. J. Heterocycl. Chem. 1969, 6, 435–437; (c)
Phillips, B. A.; Cromwell, N. H. J. Heterocycl. Chem.
1973, 10, 795–799; (d) Wasserman, H. H.; Lipshutz, B.;
Tremper, A. W.; Wu, J. S. J. Org. Chem. 1981, 46, 2991–
2999; (e) Kulkarni, S. B.; Rodebaugh, R. M.; Cromwell,
N. H. J. Heterocycl. Chem. 1976, 13, 329–332; (f) Soriano,
D. S.; Podraza, K. F.; Cromwell, N. H. J. Heterocycl.
Chem. 1980, 17, 1389–1392.
7. (a) Fowden, L. Nature (London) 1955, 176, 347–348; (b)
Fowden, L. Biochem. J. 1956, 64, 323–332; (c) Pichat, L.;
Liem, P. N.; Guermont, J. P. Bull. Soc. Chim. Fr. 1968,
4079–4081; (d) Yamada, S.; Emori, T.; Kinoshita, S.;
Okada, H. Agric. Biol. Chem. 1973, 37, 649–652.
8. (a) Chen, T.; Sanjiki, T.; Kato, H.; Ohta, M. Bull. Chem.
Soc. Jpn. 1967, 40, 2398–2401; (b) Miyoshi, M.; Sugano,
H.; Fujii, T.; Ishihara, T.; Yoneda, N. Chem. Lett. 1973,
5–6.
Scheme 6.
The most important advantage of this pathway clearly is
the direct access to the free amino acid 26.
In conclusion, starting from functionalized c-amino
esters, new 3,3-dimethoxyazetidine-2-carboxylates were
made accessible, along with the corresponding 2-
(hydroxymethyl)azetidines obtained by reduction of
the former. These compounds possess the appropriate
azetidine skeleton required for further total synthesis
of several natural products.
Acknowledgements
The authors are indebted to the IWT, the FWO and
Ghent University (GOA) for financial support of this
research.
References and notes
1. Dejaegher, Y.; KuzÕmenok, N. M.; Zvonok, A. M.; De
Kimpe, N. Chem. Rev. 2002, 102, 29–60.
2. (a) Emmer, G. Tetrahedron 1992, 48, 7165–7172; (b)
Hanessian, S.; Fu, J.-M.; Isono, K. Tetrahedron Lett.
1993, 34, 4153–4156; (c) Hanessian, S.; Fu, J.-M.; Chiara,
J.-L.; Di Fabio, R. Tetrahedron Lett. 1993, 34, 4157–4160;
(d) Isono, K.; Asahi, K.; Suzuki, S. J. Am. Chem. Soc.
1969, 91, 7490–7505; (e) Baumann, H.; Duthaler, R. O.
Helv. Chim. Acta 1988, 71, 1035–1041.
9. Duc, L.; McGarrity, J. F.; Meul, T.; Warm, A. Synthesis
1992, 391–394.
10. (a) Micetich, R. G.; Maiti, S. N.; Spevak, P.; Tanaka, M.;
Yamazaki, T.; Ogawa, K. Synthesis 1986, 292–296; (b)
Durst, T.; Koh, K. Tetrahedron Lett. 1992, 33, 6799–6802.
11. Rodebaugh, R. M.; Cromwell, N. H. J. Heterocycl. Chem.
1971, 8, 19–24.
´
12. Khoukhi, N.; Vaultier, M.; Carrie, R. Tetrahedron 1987,
43, 1811–1822.
3. Salgado, A.; Boeykens, M.; Gauthier, C.; Declercq, J.-P.;
De Kimpe, N. Tetrahedron 2002, 58, 2763–2775.