C O M M U N I C A T I O N S
Scheme 3. Copolymerization of 4 with 5
the presence of HBC absorption peaks as a function of elution
volume (see Supporting Information). The copolymer emission
spectrum revealed HBC luminescence in addition to the 360 nm
emission of the homopolymer poly5 (Figure 3b,c).
Figure 1. X-ray crystal structure of 3.
The first synthesis and polymerization of trifluorovinyl ether-
substituted hexa-peri-hexabenzocoronene to perfluorocyclobutyl
polymers and copolymers has been demonstrated. Unlike hydro-
carbon ethers, fluorovinyl ethers are stable under HBC oxidation
conditions. Discrete HBC units in PFCB polymers provide access
to potentially processable HBC optical materials.
Acknowledgment. We thank the Defense Advanced Research
Projects Agency (DARPA) and the National Science Foundation
CAREER Award (DMR 9985160 to D.W.S.) for funding. We also
thank Dr. D. Vanderveer (Clemson) for X-ray crystallography and
Dr. M. Watson (University of Kentucky) for valuable expertise.
D.W.S. is a Cottrell Scholar of Research Corporation.
Figure 2. WAXD of monomer 4 powder.
Supporting Information Available: Detailed synthetic procedures
for 1-4 and characterization data of 3 and 4 including, MALDI, DSC,
excitation, emission, WAXD, and GPC data (PDF). Crystallographic
data, including bond angles and distances (CIF). This material is
References
(1) Muller, C. D.; Falcou, A.; Reckefuss, N.; Rojahn, M.; Wiederhirn V.;
Rudati, P.; Frohne, H.; Nuyken, O.; Becker, H.; Meerholz, K. Nature 2003,
421, 829. Schmidt-Mende, L.; Fechtenkotter, A.; Mu¨llen, K.; Moons, E.;
Friend, R. H.; MacKenzie, J. D. Science 2001, 293, 1119. Friend, R. H.;
Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani,
C.; Bradley, D. D. C.; Dos Santos, D. A.; Bredas, J. L.; Logdlund M.;
Salaneck, W. R. Nature 1999, 397, 121. Heeger, A. J. Solid State Commun.
1998, 107 (11), 673.
Figure 3. Emission and absorption spectra (inset): (a) 4, (b) poly4-co-5,
and (c) poly5.
(2) Watson, M. D.; Fechtenkotter, A.; Mu¨llen, K. Chem. ReV. 2001, 101 1267.
Jarikov V. V. U.S. Patent Appl. 20040076853, 2004.
molecular diameter, while the peaks at 4.7 and 3.5 Å are assigned
to stacking of the vinyl ether groups and the cores, respectively.13
The final peak, at 2.8 Å, is assigned to the diameter of the aromatic
core edge. After thermal polymerization at 150 °C for 12 h,
diffraction peaks at these dimensions disappear.
A dispersion of monomer 4 (in CH2Cl2) exhibited an absorbance
λmax at 374 nm (Figure 3, inset). The photoluminescence spectra
revealed two peaks at 425 and 445 nm in addition to a plateau
from 520 to 580 nm. The broad emission from 520 to 580 nm is
due to excimer formation in coronene aggregates, as similarly
observed for other coronene derivatives.14 Filtration of the dispersion
and subsequent fluorescence measurements resulted in disappear-
ance of the plateau peak; however, the peaks at 425 and 445 nm
remained as the true solution fluorescence of monomer 4 (Figure
3a), as similarly observed for unsubstituted coronenes.14
(3) Tracz, A.; Jeszka, J.; Watson, M. D.; Pisula, W.; Mu¨llen, K.; Pakula, T.
J. Am. Chem. Soc. 2003, 125, 1682.
(4) Weiss, K.; Beernink, G.; Dotz, F.; Birkener, A.; Mu¨llen, K.; Woll C. H.
Angew. Chem., Int. Ed. 1999, 38, 3748. Wang, Z.; Watson, M. D.; Wu,
J.; Mu¨llen, K. Chem. Commun. 2004, 3, 336.
(5) Smith, D. W., Jr.; Chen, S.; Kumar, S.; Ballato, J.; Shah, H.; Topping,
C.; Foulger, S. AdV. Mater. 2002, 14 (21), 1585.
(6) Jin, J.; Smith, D. W., Jr.; Topping, C.; Suresh, S.; Chen, S.; Foulger, S.;
Rice, N.; Mojazza, B. Macromolecules 2003, 36 (24), 9000.
(7) Pascal, R. A.; Engen, D. V.; Kahr, B.; McMillian, W. D. J. Org. Chem.
1988, 53, 1687.
(8) Lee. T. S.; Brintzinger, H. H. J. Organomet. Chem. 1977, 127, 93.
(9) Kobayashi, K.; Shirasaka, T.; Horn, E.; Furukawa, N. Tetrahedron Lett.
2000, 41, 89.
(10) Koch, F. W.; Kovacic, P. J. Org. Chem. 1965, 30, 3176.
(11) Przybilla, L.; Brand, J. D.; Yoshimura, K.; Rader, H. J.; Mu¨llen, K. Anal.
Chem. 2000, 72, 4591.
(12) Smith,, D. W., Jr.; Babb, D. A.; Shah, H. V.; Hoeglund, A.; Traiphol, R.;
Perahia, D.; Boone, H. W.; Langhoff, C.; Radler, M. J. Fluorine Chem.
2000, 104, 109.
Monomer 4 was further mixed, via sonication, with other
trifluorovinyl ether monomers such as monomer 5.5 Upon copo-
lymeriztion at 150 °C, monomer 4 adducts became soluble, resulting
in a new PFCB copolymer (Scheme 3). Cyclopolymerization to
PFCB copolymer was confirmed by FTIR and 19F NMR. Gel
permeation chromatography results confirmed copolymerization by
(13) Herwig, P. T.; Enkelmann, V.; Schmelz, O.; Mu¨llen, K. Chem. Eur. J.
2000, 6, 1834.
(14) Seko, T.; Ogura, K.; Kawakami, Y.; Sugino, H.; Toyotama, H.; Tanaka,
J. Chem. Phys. Lett. 1998, 291, 438.
JA046855J
9
J. AM. CHEM. SOC. VOL. 126, NO. 40, 2004 12773