LETTER
Microwave-Enhanced Cadogan Cyclization
133
(7) (a) Cadogan, G. I. J.; Carmen-Wood, M. Proc. Chem. Soc.
1962, 361. (b) Cadogan, G. I. J.; Carmen-Wood, M.; Makie,
R. K.; Searle, R. J. G. J. Chem. Soc. 1965, 4831.
(c) Cadogan, G. I. J. Organophosphorus Reagents in
Organic Synthesis; Academic Press Inc.: London, 1979,
279.
(8) (a) Akermark, B.; Eberson, L.; Jonsson, E.; Patterson, E. J.
Org. Chem. 1975, 40, 1365. (b) Ames, D. E.; Bull, D.
Tetrahedron 1982, 38, 383. (c) Ames, D. E.; Opalko, A.
Tetrahedron 1984, 40, 1919. (d) Hegedus, L. S. Angew.
Chem., Int. Ed. Engl. 1988, 27, 1113; Angew. Chem. 1988,
100, 1147.
(18) General Procedure for the Microwave-Enhanced Suzuki
Reaction and Cadogan Cyclization – Synthesis of 8H-
Thieno[2,3-b]indole (4q): 3-Bromothiophene (2q, 0.041 g,
0.25 mmol), 2-nitrophenylboronic acid (0.054 g, 0.325
mmol), NaHCO3 (0.063 g, 0.75 mmol) and
tetrakis(triphenylphosphine)palladium(0) (0.015 g, 5 mol%)
were suspended in DMF (1.5 mL) and H2O (1.5 mL) in a 10
mL glass vial equipped with a small stirring magnet. The vial
was sealed tightly with an aluminium-Teflon® crimp top and
the mixture was irradiated in the cavity of a mono-mode
CEM®-Discover machine for 15 min at a pre-selected
temperature of 150 °C, using a maximum irradiation power
of 100 W. After the reaction, the vial was cooled to 50 °C by
gas jet cooling. The crude mixture was partitioned between
Et2O and H2O (25 mL each) and the aqueous layer was
extracted with Et2O (3 × 20 mL). The combined organic
layers were dried on MgSO4 and solvents were removed
under vacuum to yield the crude product as yellow oil.
Column chromatography [silica gel, heptane–EtOAc (9:1)]
afforded the biaryl compound 3q (0.046 g, 890%) as
yellowish oily material.
(9) (a) Pizzotti, M.; Cenini, S.; Quici, S.; Tollari, S. J. Chem.
Soc., Perkin Trans. 2 1994, 913. (b) Smitrovich, J. H.;
Davies, I. W. Org. Lett. 2004, 6, 533.
(10) (a) Adam, D. Nature 2003, 421, 571. (b) Kaval, N.; Van der
Eycken, J.; Caroen, J.; Dehaen, W.; Strohmeier, G. A.;
Kappe, C. O.; Van der Eycken, E. J. Comb. Chem. 2003, 5,
560. (c) Lew, A.; Krutzik, P. O.; Hart, M. E.; Chamberlin, A.
R. J. Comb. Chem. 2002, 2, 95. (d) Kappe, C. O. Curr.
Opin. Chem. Biol. 2002, 6, 314. (e) Lidström, P.; Westman,
J.; Lewis, A. Comb. Chem. High Throughput Screening
2002, 5, 441. (f) Van der Eycken, E.; Appukkuttan, P.; De
Borggraeve, W.; Dehaen, W.; Dallinger, D.; Kappe, C. O. J.
Org. Chem. 2002, 67, 7904.
The nitro compound 3q was suspended in triethyl phosphate
(3 mL) in a tightly sealed 10 mL glass vial and was irradiated
at a maximum irradiation power of 300 W for 15 min at a
pre-selected temperature of 210 °C. After the reaction, the
vial was cooled to 50 °C by gas jet cooling and the contents
were transferred to a 50 mL flask with the help of EtOAc (10
mL). This mixture was then heated to 80 °C with an excess
of HCl (6 N, 10 mL) and maintained at the temperature for 3
h. After cooling to r.t., the mixture was partitioned between
H2O and EtOAc (20 mL each) and the aqueous layer was
further extracted with EtOAc (3 × 10 mL). The combined
organic layers were dried over MgSO4 and solvents were
removed under reduced pressure, and further purification by
column chromatography (silica gel, heptane–EtOAc, 9:1)
afforded the thieno-indole 4q (0.0296 g, 76%). 1H NMR
(300 MHz, CDCl3): d = 6.92 (d, 1 H, J = 5.2 Hz), 7.19–7.27
(m, 2 H), 7.36 (d, 1 H, J = 5.2 Hz), 7.41 (d, 1 H, J = 8.0 Hz),
(11) (a) Bouchard, J.; Wakim, S.; Leclerc, M. J. Org. Chem.
2004, 69, 5705. (b) Morin, J.-F.; Leclerc, M.
Macromolecules 2001, 34, 4680. (c) Holzapfel, C. W.;
Dwyer, C. Heterocycles 1998, 48, 1513.
(12) Monovich, L. G.; Le Huérou, Y.; Rönn, M.; Molander, G. A.
J. Am. Chem. Soc. 2000, 122, 52; and references cited
therein.
(13) (a) Wright, S. W.; Hageman, D. L.; McClure, L. D. J. Org.
Chem. 1994, 59, 6095. (b) Gronowitz, S.; Hörnfledt, A.-B.;
Yang, Y.-H. Chem. Scr. 1986, 26, 383. (c) Watanabe, T.;
Miyaura, N.; Suzuki, A. Synlett 1992, 207.
(14) Appukkuttan, P.; Orts, A. B.; Chandran, R. P.; Goeman, J.
L.; Van der Eycken, J.; Dehaen, W.; Van der Eycken, E. Eur.
J. Org. Chem. 2004, 3277.
7.81 (dd, 1 H, J = 7.6, 0.8 Hz), 8.22 (br s, 1 H) ppm. 13
C
(15) Seaman, W. J. Am. Chem. Soc. 1931, 53, 711.
(16) CEM-Discover, CEM Corporation P.O. Box 200 Matthews,
NC 28106.
(17) (a) Kikugawa, Y.; Aoki, Y.; Sakamoto, T. J. Org. Chem.
2001, 66, 8612. (b) Hewlins, M. J. E.; Jackson, A. H.; Long,
A.; Campos, A.-O.; Shannon, P. V. R. J. Chem. Res., Synop.
1986, 8, 292. (c) Patel, B. P. J. J. Ind. Chem. Soc. 1985, 62,
534. (d) Clancy, M. G.; Hesabi, M. M.; Otto, M.-C. J. Chem.
Soc., Perkin Trans. 1 1984, 3, 429.
NMR (75 MHz, CDCl3): d = 111.2, 117.1, 117.6, 119.3,
119.9, 122.2, 122.5, 125.6, 141.2, 142.2 ppm. DEPT-NMR
(75 MHz, CDCl3): d = 111.2, 117.1, 117.6, 119.3, 122.5,
125.6 ppm. MS (EI): 173 [M+]. HRMS (EI): m/z calcd for
C10H07NS [M+]: 173.02992; found: 173.02986.
Synlett 2005, No. 1, 127–133 © Thieme Stuttgart · New York