1804
K. Tonogaki et al.
CLUSTER
Gratifyingly, a wide range of functional groups was found
to be intact in this cross-coupling. The use of 3-phenylpro-
pyl bromide produced desired cross-coupling products
3cg and 3eg in good yields. When alkyl bromides having
free hydroxyl group or triethylsilylether group were used,
desired 1,1-diaryl-1-alkenes 3bb and 3cf were also ob-
tained in good yields. Functional groups such as ester,
nitrile, and imide were also tolerated (3bc, 3ce, and 3di).
When alkyl bromide having olefinic moiety was used, de-
sired 1,1-diaryl-1-alkene 3dh was also obtained efficient-
ly. When 2-(trimethylsilyl)ethyl bromide was used, the
desired product 3bd was also obtained in good yield.
Moreover, various electronically and structurally diverse
b,b-diarylvinylboronate esters 2b–e can be applied in this
reaction system to give 1,1-diaryl-1-alkenes 3 efficiently.
Acknowledgment
This work was financially supported in part by a Grant-in-Aid for
Scientific Research from the Japan Society for the Promotion of
Science. K.T. is a recipient of the JSPS Predoctoral Fellowships for
Young Scientists.
References
(1) Trisubstituted olefin synthesis using vinyl(2-pyridyl)silane
or vinyl(2-pyrimidyl)silane as a platform: (a) Itami, K.;
Nokami, T.; Ishimura, Y.; Mitsudo, K.; Kamei, T.; Yoshida,
J. J. Am. Chem. Soc. 2001, 123, 11577. (b) Itami, K.;
Ushiogi, Y.; Nokami, T.; Ohashi, Y.; Yoshida, J. Org. Lett.
2004, 6, 3695. (c) Itami, K.; Ohashi, Y.; Yoshida, J. J. Org.
Chem. 2005, 70, 2778. See also: (d) Itami, K.; Mitsudo, K.;
Kamei, T.; Koike, T.; Nokami, T.; Yoshida, J. J. Am. Chem.
Soc. 2000, 122, 12013. (e) Itami, K.; Nokami, T.; Yoshida,
J. J. Am. Chem. Soc. 2001, 123, 5600.
In summary, we have developed an efficient Pd-catalyzed
cross-coupling reaction of b,b-diarylvinylboronate esters
2 with alkyl bromides. When combined with the double
Mizoroki–Heck reaction of vinylboronate ester 1 with
aryl halides, the present synthesis of 1,1-diaryl-1-alkenes
becomes extremely versatile and flexible as a whole. All
substituents on C=C core of 1,1-diaryl-1-alkenes (two
aryl groups and one alkyl group) can be varied at will by
simply changing the readily available organic halides in
the reaction scheme. Since 1,1-diaryl-1-alkene is an im-
portant structural motif found in various pharmacologi-
cally active compounds, the present procedure should find
many uses in the development of novel biofunctional
small molecules.
(2) Trisubstituted olefin synthesis using vinylboronate pinacol
ester as a platform: Itami, K.; Tonogaki, K.; Ohashi, Y.;
Yoshida, J. Org. Lett. 2004, 6, 4093.
(3) Tetrasubstituted olefin synthesis using vinyl 2-pyrimidyl
sulfide as a platform: Itami, K.; Mineno, M.; Muraoka, N.;
Yoshida, J. J. Am. Chem. Soc. 2004, 126, 11778.
(4) Tetrasubstituted olefin synthesis using alkynyl(2-
pyridyl)silane as a platform: (a) Itami, K.; Kamei, T.;
Yoshida, J. J. Am. Chem. Soc. 2003, 125, 14670.
(b) Kamei, T.; Itami, K.; Yoshida, J. Adv. Synth. Catal. 2004,
346, 1824.
(5) Review on Mizoroki–Heck reaction: Beletskaya, I. P.;
Cheprakov, A. V. Chem. Rev. 2000, 100, 3009.
(6) Mizoroki–Heck reaction of vinylboronate ester: (a) Hunt,
A. R.; Stewart, S. K.; Whiting, A. Tetrahedron Lett. 1993,
34, 3599. (b) Stewart, S. K.; Whiting, A. J. Organomet.
Chem. 1994, 482, 293. (c) Stewart, S. K.; Whiting, A.
Tetrahedron Lett. 1995, 36, 3925. (d) Hénaff, N.; Whiting,
A. Tetrahedron 2000, 56, 5193. (e) Thirsk, C.; Whiting, A.
J. Chem. Soc., Perkin Trans. 1 2002, 999. (f) Lightfoot, A.
P.; Maw, G.; Thirsk, C.; Twiddle, S. J. R.; Whiting, A.
Tetrahedron Lett. 2003, 44, 7645.
(7) (a) Metal-Catalyzed Cross-Coupling Reactions; Diederich,
F.; Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998.
(b) Cross-Coupling Reactions; Miyaura, N., Ed.; Springer:
New York, 2002.
Typical Procedure for the Suzuki–Miyaura Coupling of b,b-Di-
arylvinylboronate Esters with Alkyl Bromides
A mixture of Pd(OAc)2 (3.4 mg, 15 mmol, 5 mol%), P(t-Bu)2Me
(4.8 mg, 30 mmol, 10 mol%), NaOH (36.0 mg, 0.90 mmol), 2c (0.30
mol, 109.9 mg), and 3-phenylpropyl bromide (0.60 mmol, 119.5
mg) in dry dioxane (1.5 mL) was stirred vigorously at 60 °C for 24
h. After cooling the reaction mixture to r.t., catalyst and salts were
removed by filtration through a short silica gel pad (EtOAc). The
filtrate was evaporated, and the residue was subjected to silica gel
chromatography (hexane–EtOAc = 20:1) to afford 3cg (101.6 mg,
(8) N’Goka, V.; Stenbøl, T. B.; Krogsgaard-Larsen, P.;
Schlewer, G. Eur. J. Med. Chem. 2004, 889.
1
94%) as colorless solid. H NMR (400 MHz, CDCl3): d = 1.75 (t,
(9) (a) Casimiro-Garcia, A.; Micklatcher, M.; Turpin, J. A.;
Stup, T. L.; Watson, K.; Buckheit, R. W.; Cushman, M. J.
Med. Chem. 1999, 42, 4861. (b) Xu, G.; Micklatcher, M.;
Silvestri, M. A.; Hartman, T. L.; Burrier, J.; Osterling, M. C.;
Wargo, H.; Turpin, J. A.; Buckheit, R. W. Jr.; Cushman, M.
J. Med. Chem. 2001, 44, 4092. (c) Silvestri, M. A.;
Nagarajan, M.; Clercq, E. D.; Pannecouque, C.; Cushman,
M. J. Med. Chem. 2004, 47, 3149.
J = 8.0 Hz, 2 H), 2.17 (td, J = 7.6, 7.2 Hz, 2 H), 2.60 (t, J = 7.6 Hz,
2 H), 3.78 (s, 3 H), 3.83 (s, 3 H), 5.94 (t, J = 7.2 Hz, 1 H), 6.78 (d,
J = 8.4 Hz, 2 H), 6.87 (d, J = 8.0 Hz, 2 H), 7.06 (d, J = 8.0 Hz, 2 H),
7.11–7.16 (m, 5 H), 7.23 (d, J = 8.4 Hz, 2 H). 13C NMR (100 MHz,
CDCl3): d = 29.5, 32.0, 35.6, 55.27, 55.32, 113.3, 113.4, 125.5,
127.6, 128.1, 128.2, 128.3, 130.9, 132.6, 135.8, 140.8, 142.3, 158.2,
158.5. HRMS (EI): m/z calcd for C25H26O2: 358.1933; found:
358.1931.
(10) Kirchhoff, J. H.; Netherton, M. R.; Hills, I. D.; Fu, G. C. J.
Am. Chem. Soc. 2002, 124, 13662.
Synlett 2005, No. 11, 1802–1804 © Thieme Stuttgart · New York