C O M M U N I C A T I O N S
Me2Ph)2nacnac Cr(THF)CH2SiMe3]BARF. Furthermore, addition
of small amounts of Et2O to catalyst solutions significantly
decreases their activity. Finally, dilution of the catalyst increased
its specific activity; i.e., the effect expected due to a concentration-
dependent shift of a dissociation equilibrium.
Three-coordinate cationic Cr(III) alkyls supported by bidentate
nitrogen ligands catalyze the polymerization of ethylene and the
copolymerization of ethylene with R-olefins. Therefore, we suggest
that a species akin to A represents a reasonable candidate for the
active surface species of the heterogeneous Phillips catalyst. Further
studies concerning the effect of charge, formal oxidation state, and
ligand structure on the reactivity of chromium alkyls with olefins
will be the subject of future publications.
Acknowledgment. This research was supported by grants from
the NSF (CHE-0132017) and Chevron Phillips Chemical Co.
Supporting Information Available: Experimental and character-
ization details for 1-6 (PDF); X-ray structural data for 6 (CIF). This
Figure 2. Plot of Mn of various polyethylene samples vs ethylene
conversion (0.036 mmol 6, pethylene ) 10-40 psig). Numbers denote
Mw/Mn for each sample.
References
ration. 6 did not lose the coordinated ether upon prolonged exposure
to high vacuum.
(1) (a) Hogan, J. P. J. Polym. Sci., Polym. Chem. Ed. 1970, 8, 2637-2652.
(b) McDaniel, M. P. AdV. Catal. 1985, 33, 47-98.
Exposure of CH2Cl2 solutions of 6 at room temperature to
ethylene (10-40 psig, 5-25 min) resulted in an immediate color
change from brown to green, and seconds thereafter solid poly-
ethylene precipitated. Polymer yields indicated a “moderate”
average activity of 22(8) g PE/mmol‚h‚atm,7 decreasing slightly
with reaction time. 13C NMR revealed only trace levels of methyl
branches (<0.2 Me/1000 C). The low polydispersities of the
polymers thus obtained (Mw/Mn = 1.2) and the dependence of the
polymer molecular weight (Mn) on conversion (see Figure 2) suggest
that the process has at least some of the features characteristic of
a living polymerization.8 There are few homogeneous catalysts for
the polymerization of ethylene thought to be living;9 to our
knowledge none involve chromium.10 Polymer produced at higher
ethylene pressure (300 psig) exhibited a somewhat broader mo-
lecular weight distribution (Mw/Mn ) 1.73); however, this may be
attributable to the effects of the pronounced exotherm observed in
this experiment (20 °C to 75 °C within the first minute).
Our model system reproduces the Phillips catalyst’s ability to
produce “linear low-density polyethylene” (LLDPE) by copolym-
erization of ethylene with R-olefins. Thus, 6 catalyzed the copo-
lymerization of ethylene with 1-hexene.1 13C NMR analysis of a
polymer produced in the presence of 1-hexene (20 g of 1-hexene
in 30 mL of CH2Cl2, 200 psig C2H4) showed the presence of 103
butyl side chains per 1000 backbone carbons. Remarkably, its
polydispersity (Mw/Mn ) 1.78) is similar to that of the homopoly-
mer, and the molecular weight (Mn ) 108 000) is even larger.
We suggest that the active species in these polymerizations is
the three-coordinate nine-electron species [(2,6-Me2Ph)2nacnac-
CrCH2SiMe3]+ (A in Scheme 1) rather than the four-coordinate
ether adduct 6. Several lines of evidence support this notion. First,
addition of 1 equiv of THF to 6 yields catalytically inactive [(2,6-
(2) (a) Kim, W. K.; Fevola, M. J.; Liable-Sands, L. M.; Rheingold, A. L.;
Theopold, K. H. Organometallics 1998, 17, 4541-4543. (b) MacAdams,
L. A.; Kim, W. K.; Liable-Sands, L. M.; Guzei, I. A.; Rheingold, A. L.;
Theopold, K. H. Organometallics 2002, 21, 952-960. (c) Theopold, K.
H.; MacAdams, L. A.; Puttnual, C.; Buffone, G. P.; Rheingold, A. L.
Polym. Mater. Sci. Eng. 2002, 86, 310.
(3) For related chromium chemistry see: (a) Gibson, V. C.; Maddox, P. J.;
Newton, C.; Redshaw, C.; Solan, G. A.; White, A. J. P.; Williams, D. J.
J. Chem. Soc., Chem. Commun. 1998, 1651-1652. (b) Gibson, V. C.;
Newton, C.; Redshaw, C.; Solan, G. A.; White, A. J. P.; Williams, D. J.
Eur. J. Inorg. Chem. 2001, 1895-1903.
(4) Heintz, R. A.; Leelasubcharoen, S.; Liable-Sands, L. M.; Rheingold, A.
L.; Theopold, K. H. Organometallics 1998, 17, 5477-5485.
(5) Thomas, B. J.; Noh, S. K.; Schulte, G. K.; Sendlinger, S. C.; Theopold,
K. H. J. Am. Chem. Soc. 1991, 113, 893-902.
(6) Crystal data for 5: C61H58BCrF24N2OSi, Mw ) 1381.99, space group P2(1)/
c, a ) 13.628(2) Å, b ) 25.586(4) Å, c ) 18.371(3) Å, V ) 6405.4(16)
Å3, Z ) 4, D ) 1.433 g cm-3, µ(MoKR) ) 3.09 cm-1, F(000) ) 2820,
T ) 203 K, 15 198 independent reflections, R1 ) 0.0747, wR2 ) 0.2154.
(7) Britovsek, G. J. P.; Gibson, V. C.; Wass, D. F. Angew. Chem., Int. Ed.
1999, 38, 429-447.
(8) Coates, G. W.; Hustad, P. D.; Reinartz, S. Angew. Chem., Int. Ed. 2002,
41, 2236-2257.
(9) (a) Brookhart, M.; Volpe, A. F., Jr.; De Simone, J. M. Polym. Prepr. Am.
Chem. Soc. DiV. Polym. Chem. 1991, 32, 461-462. (b) Brookhart, M.;
DeSimone, J. M.; Grant, B. E.; Tanner, M. J. Macromolecules 1995, 28,
5378-5380. (c) Mashima, K.; Fujikawa, S.; Urata, H.; Tanaka, E.;
Nakamura, A. J. Chem. Soc., Chem. Commun. 1994, 1623-1624. (d)
Gottfried, A. C.; Brookhart, M. Macromolecules 2001, 34, 1140-1142.
(e) Matsugi, T.; Matsui, S.; Kojoh, S.; Takagi, Y.; Inoue, Y.; Fujita, T.;
Kashiwa, N. Chem. Lett. 2001, 566-567. (f) Makio, H.; Kashiwa, N.;
Fujita, T. AdV. Synth. Catal. 2002, 344, 477-493. (g) Matsugi, T.; Matsui,
S.; Kojoh, S.; Takagi, Y.; Inoue, Y.; Nakano, T.; Fujita, T.; Kashiwa, N.
Macromolecules 2002, 35, 4880-4887. (h) Mitani, M.; Mohri, J.; Yoshida,
Y.; Saito, J.; Ishii, S.; Tsuru, K.; Matsui, S.; Furuyama, R.; Nakano, T.;
Tanaka, H.; Kojoh, S.; Matsugi, T.; Kashiwa, N.; Fujita, T. J. Am. Chem.
Soc. 2002, 124, 3327-3336. (i) Mitani, M.; Nakano, T.; Fujita, T. Chem.
Eur. J. 2003, 9, 2397-2403. (j) Reinartz, S.; Mason, A. F.; Lobkovsky,
E. B.; Coates, G. W. Organometallics 2003, 22, 2542-2544.
(10) For a living ethylene oligomerization system containing Cr, see: (a) Mani,
G.; Gabbai, F. P. Angew. Chem., Int. Ed. 2004, 43, 2263-2266. (b)
Ganesan, M.; Gabbai, F. P. Organometallics 2004, 23, 4608-4613.
JA043877X
9
J. AM. CHEM. SOC. VOL. 127, NO. 4, 2005 1083