B. Bachand et al. / Tetrahedron Letters 48 (2007) 8587–8589
8589
Pd/C 10 %
5. Durst, T.; Du Manoir, J. Can. J. Chem. 1969, 47, 1230–
1233.
6. Durst, T.; Tin, K. C. Can. J. Chem. 1970, 48, 845–
851.
7. Enders, D.; Harnying, W.; Vignola, N. Eur. J. Org. Chem.
2003, 3939–3947.
H2N
SO3H
X
SO3H
H2, 40-45 psi,
methanol
R
R
6a : X = N3, R = 1-adamantyl
6b : X = N3, R = t-butyl
9a : R = 1-adamantyl (57 %)
9b : R = t-butyl (98 %)
6c : X = N3, R = dimethylbenzyl
9c : R = dimethylbenzyl (60 %)a
8. Thoumazeau, E.; Jousseaume, B.; Tiffon, F.; Duboudin,
J.-G. Heterocycles 1982, 19, 2247–2250.
9. Franks, M. A.; Schrader, E. A.; Pietsch, E. C.; Pennella,
D. R.; Torti, S. V.; Welker, M. E. Bioorg. Med. Chem.
2005, 13, 2221–2233.
Scheme 3. Formation of 2-alkyl-3-amino-1-propanesulfonic acids
9a–c. a Yield from sultone 3c.
derivatives of 3-amino-1-propanesulfonic acid (9a–c) in
good yields (Scheme 3).
10. Smil, D. V.; Souza, F. E. S.; Fallis, A. G. Bioorg. Med.
Chem. Lett. 2005, 15, 2057–2060.
11. Bonini, B. F.; Kemperman, G.; Willems, S. T. H.; Fochi,
M.; Mazzanti, G.; Zwanenburg, B. Synlett 1998, 1411–
1413.
In conclusion, a novel methodology has been developed
that allows rapid construction of several 2-alkyl-
propane-1,3-sultones in good to excellent yields. The
two-step transformation is easy, practical, and utilizes
only simple reagents such as ethyl methanesulfonate
and a-bromomethyl ketones, the latter often commer-
cially available or conveniently synthesized. The sultone
products, as the key intermediates for the preparation of
2-alkyl-3-amino-1-propanesulfonic acids, were success-
fully converted to the desired tramiprosate derivatives
in good yields.
12. To a stirred solution of lithium bis(trimethylsilyl)amide
(1.0 M solution in THF, 42 mL, 42 mmol, 1.5 equiv) at
À78 ꢁC was added dropwise a solution of ethyl methane-
sulfonate (4.3 mL, 10 mmol, 1.5 equiv) in dry THF
(5 mL). The mixture was stirred at À78 ꢁC for 30 min
followed by the addition of a solution of 1-bromopinaco-
lone (5.0 g, 28 mmol) in dry THF (10 mL). The mixture
was then stirred at À78 ꢁC for 2 h and later stirred at
À50 ꢁC for an additional 2 h. The reaction mixture was
quenched with a saturated aqueous solution of ammonium
chloride (100 mL), extracted with EtOAc (3 · 100 mL).
The combined organic layers were washed subsequently
with water (2 · 50 mL) and brine (100 mL), dried over
MgSO4, and concentrated under vacuum. The residue was
purified by flash chromatography using hexane/EtOAc
(90:10) to provide 3.8 g of 2b (75% yield): 1H NMR
(500 MHz, CDCl3) d 1.21 (s, 9H), 5.12 (d, J = 2.0 Hz, 2H),
6.45 (t, J = 2.0 Hz, 1H). 13C NMR (125 MHz, CDCl3) d
28.7, 33.8, 71.7, 116.4, 161.7. HRMS for C7H13O3S; m/z
177.0585 (expected), 177.0593 (found).
References and notes
1. Gervais, F.; Paquette, J.; Morrissette, C.; Krzywkowski,
P.; Yu, M.; Azzi, M.; Lacombe, D.; Kong, X.; Aman, A.;
Laurin, J.; Szarek, W. A.; Tremblay, P. Neurobiol. Aging
2007, 28, 537–547.
2. For a review on sultone chemistry, see Roberts, D. W.;
Williams, D. L. Tetrahedron 1987, 43, 1027–1062.
3. Breslow, D. S.; Skolnik, H. Multi-sulfur and oxygen five-
and six-membered heterocycles. In The Chemistry of
Heterocyclic Compounds; Part II; Interscience: New York,
1966; Vol. 21, pp 774–780.
13. Concellon, J. S.; Riego, E.; Bernad, P. Org. Lett. 2002, 4,
1303–1305.
14. Klein, L. L.; Yeung, C. M.; Kurath, P.; Mao, J. C.;
Fernandes, P. B.; Lartey, P. A.; Pernet, A. G. J. Med.
Chem. 1989, 32, 151–160.
4. Bordwell, F. G.; Osborne, C. E.; Chapman, R. D. J. Am.
Chem. Soc. 1959, 81, 2698–2705.
15. Enders, D.; Harnying, W. Synthesis 2004, 2910–2918.