Design of peptides with α,β-dehydro-residues
767
Table 4. List of Hydrogen Bonds for Peptide Boc–Ala–ꢀPhe–ꢀPhe–Phe–OCH3 (Estimated Standard
Deviations are Given in Parentheses)
◦
˚
----
----
Type
D
H· · ·A
D· · ·A (A)
D
H· · ·A ( )
Symmetry
ꢁ
----
N3 H3· · ·O 0
Intramolecular
Intramolecular
Intermolecular
2.943(6)
2.964(7)
2.894(7)
140.0(2)
166.5(6)
174.4(1)
x, y, z
x, y, z
−x, y + 1/2, −z + 1/2
ꢁ
----
N4 H4· · ·O 1
ꢁ
----
N2 H2· · ·O 3
Supplementary material The crystallographic data was submitted
in the Cambridge Crystallographic Data Centre (CCDC) with the
deposition number CCDC 254434. The data is accessible from the
(i + 2) positions adopt an unfolded S-
shaped structure with dihedral angles φ,
ψ centred at 60◦, 30◦.12,13
(ii) The peptides containing two consecu-
tive ꢀPhe residues at (i + 2) and (i + 3)
positions with residues other than the
branched β-carbons at (i + 1) and (i + 4)
positions form two overlapping type III
β-turns (incipient 310-helix).14,30
(iii) The sequences containing two consecu-
tive ꢀPhe residues at (i + 2) and (i + 3)
positions with branched β-carbon residue
only at (i + 1) position adopt a conforma-
tion with two overlapping types II and IIIꢁ
β-turns.16
Acknowledgments
The authors acknowledge financial support
from the Department of Science and Technology
(DST), New Delhi under the FIST programme.
V.K. Goel thanks the Council of Scientific and
Industrial Research (CSIR), New Delhi for the
award of a Senior Research Fellowship.
References
(iv) The peptides containing two consecutive
ꢀPhe residues at (i + 2) and (i + 3) po-
sitions with branched β-carbon residues
such as Val and Ile at both (i + 1) and
(i + 4) positions form two overlapping
types II and Iꢁ β-turns.15
1. Singh, T.P.; Kaur, P. Prog. Biophys. Mol. Biol. 1996, 66, 141–
165.
2. Jain, R.M.; Rajashankar, K.R.; Ramakumar, S.; Chauhan, V.S.
J. Am. Chem. Soc. 1997, 119, 3205–3211.
3. Vijayraghavan, R.; Kumar, P.; Dey, S.; Singh, T.P. Acta Crys-
tallogr. 2001, C57, 1220–1221.
4. Ramagopal, U.A.; Ramakumar, S.; Mathur, P.; Joshi, R.;
Chauhan, V.S. Protein Eng. 2002, 15(4), 331–335.
5. Makker, J.; Dey, S.; Kumar, P.; Singh, T.P. Z. Kristallogr. 2002,
217, 69–371.
6. Makker, J.; Dey, S.; Mukherjee, S.; Vijayaraghavan, R.; Kumar,
P.; Singh, T.P. J. Mol. Struct. 2003, 654, 119–124.
7. Vijayaraghavan, R.; Makker, J.; Dey, S.; Kumar, P.; Singh, T.P.
J. Peptide Res. 2003, 62, 63–69.
8. Vijayaraghavan, R.; Makker, J.; Dey, S.; Kumar, P.; Singh, T.P.
J. Mol. Struc. 2003, 654, 103–110.
9. Vijayraghavan, R.; Makker, J.; Kumar, P.; Dey, S.; Singh T.P. Z.
Kristallogr. 2003, 218, 52–54.
10. Goel, V.K.; Somvanshi, R.K.; Dey, S.; Singh, T.P. Struct. Chem.
2005, 16, 5.
11. Goel, V.K.; Dey, S.; Singh, T.P. J. Mol. Struct. 2005, 738, 191–
194.
12. Pieroni, O.; Montagnoli, A.; Fissi, A.; Merlino, S.; Ciardelli, F.
J. Am. Chem. Soc. 1975, 97, 6820–6826.
13. Pieroni, O.; Fissi, A.; Merlino, S.; Ciardelli, F. Israel J. Chem.
1976/1977, 15, 22–28.
14. Tuzi, A.; Ciajolo, M.R.; Guarino, G.; Temussi, P.A.; Fissi, A.;
Pieroni, O. Biopolymers 1993, 33, 1111–1121.
15. Dey, S.; Mitra, S.N.; Singh, T.P. Biopolymers 1996, 39,
849.
These results indicate that specific confor-
mations of peptides can be generated with α,β-
dehydro-residues. The predictable nature of these
conformations makes the design of peptides with
α,β-dehydro-residues a useful method for de-
veloping specific ligands for various biological
applications including drug design. The rational
structure-based drug design requires the knowl-
edge of the three-dimensional structures of the
target molecules and the tools to design ligands
with complementary structures. A number of de-
sign rules with α,β-dehydro-residues provide a
useful method for developing peptide molecules
with desired structures.