S. Kotha, K. Mandal, S. Banerjee, S. M. Mobin
FULL PAPER
[4]
a) P. R. Rich, Biochim. Biophys. Acta 1984, 768, 53–79; b)
O. Th. Magnusson, H. Toyama, M. Saeki, A. Rojas, J. C. Reed,
R. C. Liddington, J. P. Klinman, R. Schwarzenbacher, Proceed.
Natl. Acad. Sci. USA 2004, 101, 7913–7918; c) S. Vasdev, V.
Gill, Int. J. Angiol. 2005, 14, 60–73.
a) H. J. Prochaska, M. J. De Long, P. Talalay, Proceed. Natl.
Acad. Sci. USA 1985, 82, 8232–8236; b) M. Mure, S. A. Mills,
J. P. Klinman, Biochemistry 2002, 41, 9269–9278.
O. Lavergne, A.-C. Fernandes, L. Bréhu, A. Sidhu, M.-C.
Brézak, G. Prévost, B. Ducommun, M.-O. Contour-Galcera,
Bioorg. Med. Chem. Lett. 2006, 16, 171–175.
a) H. Tamiaki, K. Maruyama, Chem. Lett. 1993, 1499–1502;
b) S. Hoppen, U. Emde, T. Friedrich, L. Grubert, U. Koert,
Angew. Chem. Int. Ed. 2000, 39, 2099–2102; c) S. Arndt, U.
Emde, S. Bäurle, T. Friedrich, L. Grubert, U. Koert, Chem.
Eur. J. 2001, 7, 993–1005; d) K. Iskander, A. K. Jaiswal, Chem.
Biol. Interact. 2005, 153–154, 147–157.
a) A. Kroeger, V. Dadak, M. Klingenberg, F. Diemer, Eur. J.
Biochem. 1971, 21, 322–333; b) T. Kimachi, K. Sugita, K. Bes-
sho, F. Yoneda, Bioorg. Med. Chem. Lett. 1995, 5, 31–34.
J. M. Hevel, S. A. Mills, J. P. Klinman, Biochemistry 1999, 38,
3683–3693.
a) J. A. Duine, J. A. Jongejan, Vitamins Hormones 1989, 45,
223–262; b) S. White, G. Boyd, F. S. Mathews, Z. Xia, W. Dai,
Y. Zhang, V. L. Davidson, Biochemistry 1993, 32, 12955–12958.
S. Bittner, Amino Acids 2006, 30, 205–224.
a) S. Kotha, A. Kuki, Chem. Lett. 1993, 2, 299–302; b) S. Ko-
tha, E. Brahmachary, J. Org. Chem. 2000, 65, 1359–1365.
a) M. Alnabari, S. Bittner, Amino Acids 2001, 20, 381–387; b)
T. Win, S. Bittner, Tetrahedron Lett. 2005, 46, 3229–3231.
a) P. Schwab, R. H. Grubbs, J. W. Ziller, J. Am. Chem. Soc.
1996, 118, 100–110; b) M. Scholl, S. Ding, C. W. Lee, R. H.
Grubbs, Org. Lett. 1999, 1, 953–956; c) S. B. Garber, J. S.
Kingsbury, B. L. Gray, A. H. Hoveyda, J. Am. Chem. Soc.
2000, 122, 8168–8179.
solvent was removed under reduced pressure and the crude product
was purified by silica gel flash column chromatography (EtOAc in
petroleum ether 75%) to afford compound 26b (14 mg, 64%) as a
brown solid. Rf = 0.30 (silica gel, EtOAc); m.p. Ͼ300 °C. 1H NMR
(400 MHz, CDCl3, 25 °C, TMS): δ = 1.38 (t, J = 7.2 Hz, 6 H, 2
OCH2CH3), 2.17 (s, 6 H, 2 COCH3), 3.02 (br. s, 2 H, 2 CHCHaHb),
3.18 (br. s, 2 H, 2 CHCHaHb), 3.91 (s, 2 H, 2 C60CHaHb), 4.12 (s,
2 H, 2 C60CHaHb), 4.18–4.40 (m, 4 H, 2 OCH2CH3), 5.00 (dt, J =
7.6, 7.6 Hz, 2 H, 2 CHNHAc), 7.01 (d, J = 7.6 Hz, 2 H, 2 NH)
ppm. 13C NMR (100.6 MHz, CDCl3, 25 °C, TMS): δ = 14.5, 23.4,
37.0, 45.4, 52.4, 62.3, 65.9, 135.8 (2 C), 140.35, 140.41 (2 C), 141.8
(2 C), 142.2, 142.3, 142.4 (2 C), 142.79 (2 C), 142.8, 143.26, 143.33,
144.9 (2 C), 145.5, 145.62, 145.65, 145.67, 145.7 (2 C), 145.9, 146.5
(2 C), 146.7 (2 C), 147.8, 156.4, 156.7, 170.6, 172.4 ppm. IR (neat):
[5]
[6]
[7]
ν = 3404 (NH), 1739 (ester C=O), 1652 (amide C=O), 527 cm–1
˜
(C60). UV (CHCl3): λmax (ε)
= 278 nm (35955), 704 nm
[8]
(96 mol–1dm3cm–1). MS (Q-Tof): 1089 [M + H].
X-ray Crystallographic Data of Compound 10b: The crystallo-
[9]
graphic data presented here is of the half molecule in a unit cell.
¯
C8H12NO3, M = 170.19, triclinic, space group, P1, a = 4.9555(6),
[10]
b = 8.2940(19), c = 11.190(3) Å, β = 97.645(16)°, V = 449.98
(18) Å3, T = 293(2) K, Z = 2, µ(Mo-Kα) = 0.096 mm–1, 4519 reflec-
tions measured, 2045 unique (Rint = 0.0164), observed with
[11]
[12]
IϾ2σ(I) which were used in all refinements; R1 = 0.0874, wR2
=
0.2358 for the observed data.
[13]
[14]
CCDC-621384 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
[15]
a) Hand Book of Metathesis, vol. 1–3 (Ed.: R. H. Grubbs),
Wiely-VCH, Weinheim, 2003; for some selected reviews on ole-
fin metathesis, see: ; b) A. Fürstner, Angew. Chem. Int. Ed.
2000, 39, 3012–3043; c) T. M. Trnka, R. H. Grubbs, Acc. Chem.
Res. 2001, 34, 18–29; d) S. Kotha, N. Sreenivasachary, Indian
J. Chem., Sect. B 2001, 40, 763–780; e) R. R. Schrock, A. H.
Hoveyda, Angew. Chem. Int. Ed. 2003, 42, 4592–4633; f) S. J.
Connon, S. Blechert, Angew. Chem. Int. Ed. 2003, 42, 1900–
1923; g) R. H. Grubbs, Tetrahedron 2004, 60, 7117–7140; h)
M. D. McReynolds, J. M. Dougherty, P. R. Hanson, Chem.
Rev. 2004, 104, 2239–2258; i) K. C. Nicolaou, P. G. Bulger, D.
Sarlah, Angew. Chem. Int. Ed. 2005, 44, 4490–4527; for applica-
tions of metathesis reaction towards the synthesis of amino ac-
ids, see: j) S. N. Osipov, P. Dixneuf, Russ. J. Org. Chem. 2003,
39, 1211–1220; k) J. Kaiser, S. S. Kinderman, B. C. J. van Esse-
veldt, F. L. van Delft, H. E. Schoemaker, R. H. Blaauw,
F. P. J. T. Rutjes, Org. Biomol. Chem. 2005, 3, 3435–3467; l)
A. J. Phillips, A. D. Abell, Aldrichchim. Acta 1999, 32, 75–89;
m) R. Grubbs, Angew. Chem. Int. Ed. 2006, 45, 3760–3765.
For reviews on enyne metathesis, see: a) M. Mori, Top. Or-
ganomet. Chem. 1998, 1, 133–154; b) C. S. Poulsen, R. Madsen,
Synthesis 2003, 1–18; c) S. T. Diver, A. J. Giessert, Chem. Rev.
2004, 104, 1317–1382; d) S. V. Maifeld, D. Lee, Chem. Eur. J.
2005, 11, 6118–6126.
For cross-enyne metathesis: a) S. C. Schurer, S. Blechert, Tetra-
hedron Lett. 1999, 40, 1877–1880; b) S. Kotha, S. Halder, E.
Brahmachary, T. Ganesh, Synlett 2000, 853–855; c) S. Mix, S.
Blechert, Org. Lett. 2005, 7, 2015–2018; d) M. Kim, D. Lee,
Org. Lett. 2005, 7, 1865–1868; e) M. D. Middleton, S. T. Diver,
Tetrahedron Lett. 2005, 46, 4039–4043; f) S. T. Diver, J. Mol.
Catal. A 2006, 254, 29–42.
For earlier reports on ethylene–alkyne metathesis, see: a) A.
Kinoshita, N. Sakakibara, M. Mori, J. Am. Chem. Soc. 1997,
119, 12388–12389; b) A. Kinoshita, N. Sakakibara, M. Mori,
Tetrahedron 1999, 55, 8155–8167; c) G. Zheng, T. J. Dougherty,
Acknowledgments
We thank the Department of Science and Technology (DST), New
Delhi, for the financial support, SAIF-Mumbai for providing spec-
tral facilities and the National Single Crystal X-ray Diffraction Fa-
cility, Mumbai for crystallographic data K. M. and S. B. thank the
Council of Scientific & Industrial Research (CSIR) and University
Grants Commission (UGC), New Delhi, respectively, for the award
of research fellowships. We thank Prof. R. Murugavel, Department
of Chemistry, IIT Bombay, for helpful suggestions regarding crys-
tallographic data analysis.
[1] For literature related to hybrid systems: a) L. F. Tietze, G.
Schneider, J. Wölfling, A. Fecher, T. Nöbel, S. Petersen, I.
Schuberth, C. Wulff, Chem. Eur. J. 2000, 6, 3755–3760; b) S.
Derbré, R. Duval, G. Roué, A. Garofano, E. Poupon, U.
Brandt, S. A. Susin, R. Hocquemiller, ChemMedChem 2006, 1,
118–129; c) E. Álvaro, M. C. de la Torre, M. A. Sierra, Chem.
Eur. J. 2006, 12, 6403–6411. For reviews on hybrid systems see:
; d) G. Mehta, V. Singh, Chem. Soc. Rev. 2002, 31, 324–334; e)
L. F. Tietze, H. P. Bell, S. Chandrashekar, Angew. Chem. Int.
Ed. 2003, 42, 3996–4028.
[2] a) R. H. Thomson, in: Naturally Occurring Quinones IV, Lon-
don, Springer, 1996; b) K. Eckardt, D. Tresselt, W. Ihn, G.
Bradler, G. Reinhardt, J. Antibiot. 1982, 35, 1638–1640; c) Y.
Mikami, K. Takahashi, K. Yazawa, T. Arai, M. Namikoshi, S.
Iwasaki, S. Okuda, J. Biol. Chem. 1985, 260, 344–348.
[3] a) P. C. Dwivedi, K. G. Rao, Indian J. Chem. 1972, 10, 944–
945; b) A. D. Joran, B. A. Leland, G. G. Geller, J. H. Hopfield,
P. B. Dervan, J. Am. Chem. Soc. 1984, 106, 6090–6092; c) G. A.
Kraus, M. Kirihara, J. Org. Chem. 1992, 57, 3256–3257; d) L.
Alfonta, Z. Zhang, S. Uryu, J. A. Loo, P. G. Schultz, J. Am.
Chem. Soc. 2003, 125, 14662–14663.
[16]
[17]
[18]
1254
www.eurjoc.org
© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2007, 1244–1255