1382 Journal of Medicinal Chemistry, 2005, Vol. 48, No. 5
Russell et al.
(10) Collinson, N.; Kuenzi, F. M.; Jarolimek, W.; Maubach, K. A.;
Cothliff, R.; Sur, C.; Smith, A.; Out, F. M.; Howell, O.; Atack, J.
R.; McKernan, R. M.; Seabrook, G. R.; Dawson, G. R.; Whiting,
P. J.; Rosahl, T. W. Enhanced Learning and Memory and altered
GABAergic Synaptic Transmission in Mice Lacking the R5
Subunit of the GABAA Receptor. J. Neurosci. 2002, 22, 5572-
5580.
(11) Low, K.; Crestani, F.; Keist, R.; Benke, D.; Bru¨nig, I.; Benson,
J. A.; Fritschy, J.-M.; Ru¨licke, T.; Bluethmann, H.; Mo¨hler, H.;
Rudolph, U. Molecular and Neuronal Substrate for the Selective
Attenuation of Anxiety. Science 2000, 290, 131-134.
(12) Crestani, F.; Low, K.; Keist, R.; Mandelli, M.-J.; Mo¨hler, H.
Molecular Targets for the Myorelaxant Action of Diazepam. Mol.
Pharmacol. 2001, 59, 442-445.
(13) Mo¨hler, H.; Fritschy, J. M.; Rudolph, U. A New Benzodiazepine
Pharmacology. J. Pharmacol. Exp. Ther. 2002, 300, 2-8.
(14) Ta¨uber, M.; Calame-Droz, E.; Prut, L.; Rudolph, U.; Crestani,
F. R2-γ-Aminobutyric acid (GABA)A Receptors are the Molecular
Substrates Mediating Precipitation of Narcosis but not of
Sedation by the Combined Use of Diazepam and Alcohol in vivo.
Eur. J. Neurosci. 2003, 18, 2599-2604.
(15) Whiting, P. J. The GABA-A Receptor Gene Family: New
Opportunities for Drug Development. Curr. Opin. Drug Discov-
ery Dev. 2003, 6, 648-657.
1.80-1.99 (4H, m), 3.49 (1H, s), 3.799 (1H, s), 5.80 (2H, s),
7.54-7.62 (3H, m), 7.78 (1H, dd, J ) 8.5 and 5.4 Hz), 8.11
(1H, d, J ) 8.5 Hz), 8.26-8.31 (3H, m), 12.25 (1H, br s); MS
(ES+) m/z 400 [M + H]+. Anal. [C23H21N5O2‚2HCl‚1.3H2O] C,
H, N.
3-Phenyl-6-[(1-propyl-1H-1,2,4-triazol-3-yl)methoxy]-
7,8,9,10-tetrahydro-7,10-ethano[1,2,4]triazolo[3,4-a]-
phthalazine (95) and 3-Phenyl-6-[(1-propyl-1H-1,2,4-tri-
azol-5-yl)methoxy]-7,8,9,10-tetrahydro-7,10-ethano[1,2,4]-
triazolo[3,4-a]phthalazine (96). To a stirred mixture of
sodium hydride (60% dispersion in oil, 22.1 mg, 0.553 mmol)
and iodopropane (0.0553 mL, 0.567 mmol) in anhydrous DMF
(2 mL) under nitrogen, at 0 °C, was added dropwise, over 8
min, a solution of 92 (0.1767 g, 0.473 mmol) in anhydrous DMF
(7 mL). The mixture was then stirred for 1.5 h and allowed to
warm slowly to 12 °C. More sodium hydride (60% dispersion
in oil, 4.4 mg, 0.110 mmol) was added, and the mixture was
stirred for another 1 h. Water (40 mL) was added, and the
mixture was stirred for a few minutes. The mixture was
filtered, a little saturated aqueous NaCl solution was added
to the filtrate, and this was extracted with ethyl acetate (2 ×
50 mL). The combined organic extracts were dried (MgSO4)
and evaporated. The residue was purified by flash chroma-
tography (silica gel, 0-3% MeOH/EtOAc) to afford 75.8 mg
(39%) of 96 and 106.9 mg (54%) of 95 as white solids:
95: mp 203-205 °C (CH2Cl2-EtOAc-hexane); 1H NMR
(360 MHz, CDCl3) δ 0.95 (3H, t, J ) 7.4 Hz), 1.46 (4H, m),
1.82-1.99 (6H, m), 3.51 (1H, s), 3.96 (1H, s), 4.14 (2H, t, J )
7.1 Hz), 5.54 (2H, s), 7.45-7.56 (3H, m), 8.08 (1H, s), 8.52 (2H,
d); MS (ES+) m/z 416 [M + H]+. Anal. [C23H25N7O‚0.4H2O] C,
H, N.
(16) Whiting, P. J. GABA-A Receptor Subtypes in the Brain:
a
Paradigm for CNS Drug Discovery? Drug Discovery Today 2003,
8, 445-450.
(17) Carling, R. W.; Moore, K. W.; Street, L. J.; Wild, D.; Isted, C.;
Leeson, P. D.; Thomas, S.; O′Connor, D.; McKernan, R. M.;
Quirk, K.; Cook, S. M.; Atack, J. R.; Wafford, K. A.; Thompson,
S. A.; Dawson, G. R.; Ferris, P.; Castro, J. L. 3-Phenyl-6-(2-
pyridyl)methyloxy-1,2,4-triazolo[3,4-a]phthalazines and Ana-
logues: High-Affinity γ-Aminobutyric Acid-A Benzodiazepine
Receptor Ligands with R2, R3, and R5-Subtype Binding Selectiv-
ity over R1. J. Med. Chem. 2004, 47, 1807-1822.
(18) Williams, R. V.; Todime, M. M. R.; Enemark, P.; van der Helm,
D.; Rizvi, S. K. Unusual Stereoselectivity in the Diels-Alder
Addition of Cyclopentadiene with the Bicyclo[2.2.2]octane Nucleus.
J. Org. Chem. 1993, 58, 6740-6744.
(19) Tanga, M. J.; Bupp, J. E.; Tochimoto, T. K. Synthesis of Five
Potential Heterocyclic Amine Food Mutagens. J. Heterocycl.
Chem. 1997, 34, 717-727.
(20) Khanna, I. K.; Yu, Y.; Huff, R. M.; Weier, R. M.; Xu, X.; Koszyk,
F. J.; Collins, P. W.; Cogburn, J. N.; Isakson, P. C.; Koboldt, C.
M.; Masferrer, J. L.; Perkins, W. E.; Seibert, K.; Veenhuizen, A.
W.; Yuan, J.; Yang, D.-C.; Zhang, Y. Y. Selective Cyclooxygenase-
2-Inhibitors: Heteroaryl Modified 1,2-Diarylimidazoles are Po-
tent, Orally Active Antiinflammatory Agents. J. Med. Chem.
2000, 43, 3168-3185.
(21) Iversen, P. E.; Lund, H. Preparation of 2-Imidazole- and 2-Thi-
azolecarbaldehydes. Acta Chem. Scand. 1966, 20, 2649-2657.
(22) Showell, G. A.; Gibbons, T. L.; Kneen, C. O.; MacLeod, A. M.;
Merchant, K.; Saunders, J.; Freedman, S. B.; Patel, S.; Baker,
R. Tetrahydropyridyloxadiazoles: Semirigid Muscarinic Ligands.
J. Med. Chem. 1991, 34, 1086-1094.
(23) Whitten, J. P.; Matthews, D. P.; McCarthy, J. R. [2-(Trimethyl-
silyl)ethoxy]methyl (SEM) as a Novel and Effective Imidazole
and Fused Aromatic Imidazole Protecting Group. J. Org. Chem.
1986, 51, 1891-1894.
96: mp 166-181 °C (CH2Cl2-EtOAc-hexane); 1H NMR
(360 MHz, CDCl3) δ 0.94 (3H, t, J ) 7.4 Hz), 1.39 (2H, m),
1.51 (2H, m), 1.86-1.97 (6H, m), 3.41 (1H, s), 4.01 (1H, s), 4.17
(2H, t, J ) 7.1 Hz), 5.61 (2H, s), 7.48-7.58 (3H, m), 7.97 (1H,
s), 8.44 (2H, d, J ) 6.8 Hz); MS (ES+) m/z 416 [M + H]+. Anal.
[C23H25N7O‚0.23C6H14] C, H, N.
Biological Methods. Radioligand Binding Studies.
This procedure has been fully described by Chambers et al.25
Electrophysiology. Voltage Clamp in Xenopus laevis
Oocytes. This procedure has been described by Street et al.27
Acknowledgment. We thank Christophe Derrien
for the preparative HPLC purifications.
Supporting Information Available: Yields, melting
points, and spectral data for all final compounds and inter-
mediates not included above. This material is available free
References
(24) Hadingham, K. L.; Wingrove, P.; Le Bourdelles, B.; Palmer, K.
J.; Ragan, C. I.; Whiting, P. J. Cloning of cDNA Sequences
Encoding Human R2 and R3 γ-Aminobutyric AcidA Receptor
Subunits and Characterization of the Benzodiazepine Pharma-
cology of Recombinant R1-, R2-, R3- and R5-Containing Human
γ-Aminobutyric AcidA Receptors. Mol. Pharmacol. 1993, 43,
970-975.
(25) Chambers, M. S.; Atack, J. R.; Broughton, H. B.; Collinson, N.;
Cook, S.; Dawson, G. R.; Hobbs, S. C.; Marshall, G.; Maubach,
K. A.; Pillai, G. V.; Reeve, A. J.; MacLeod, A. M. Identification
of a Novel, Selective GABAA R5 Receptor Inverse Agonist Which
Enhances Cognition. J. Med. Chem. 2003, 46, 2227-2240.
(26) Wafford, K. A.; Whiting, P. J.; Kemp, J. A. Differences in Affinity
and Efficacy of Benzodiazepine Receptor Ligands on Recombi-
nant γ-Aminobutyric AcidA Receptor Subtypes. Mol. Pharmacol.
1992, 43, 240-244.
(27) Street, L. J.; Sternfeld, F. S.; Jelley, R. A.; Reeve, A. J.; Carling,
R. W.; Moore, K. W.; McKernan, R. M.; Sohal, B.; Cook, S.; Pike,
A.; Dawson, G. R.; Bromidge, F. A.; Wafford, K. A.; Seabrook,
G. R.; Thompson, S. A.; Marshall, G.; Pillai, G. V.; Castro, J. L.;
Atack, J. R.; MacLeod, A. M. Synthesis and Biological Evaluation
of 3-Heterocyclyl-7,8,9,10-tetrahydro-(7,10-ethano)-1,2,4-triazolo-
[3,4-a]phthalazines and Analogues as Subtype-Selective Inverse
Agonists for the GABAA R5 Benzodiazepine Binding Site. J. Med.
Chem. 2004, 47, 3642-3657.
(28) Ertl, P.; Rohde, B.; Selzer, P. Fast Calculation of Molecular Polar
Surface Area as a Sum of Fragment-Based Contributions and
Its Application to the Prediction of Drug Transport Properties.
J. Med. Chem. 2000, 43, 3714-3717
(1) Sieghart, W. Structure and Pharmacology of γ-Aminobutyric
AcidA Receptor Subtypes. Pharmacol. Rev. 1995, 47, 181-234.
(2) Mehta, A. K.; Ticku, M. K. An Update on GABAA Receptors.
Brain Res. Rev. 1999, 29, 196-217.
(3) McKernan, R. M.; Whiting, P. J. Which GABAA-Receptor sub-
types Really Occur in the Brain? Trends Neurosci. 1996, 19,
139-143.
(4) Trudell, J. R. Unique Assignment of Intersubunit association
in GABAA R1â3γ2 Receptors Determined by Molecular Model-
ling. Biochim. Biophys. Acta 2002, 1565, 91-96.
(5) Sigel, E. Mapping of the Benzodiazepine Recognition Site on
GABAA Receptors. Curr. Top. Med. Chem. 2002, 2, 833-839.
(6) Atack, J. R. Anxioselective compounds acting at the GABAA
receptor benzodiazepine binding site. Current Drug Targets-CNS
and Neurological Disorders 2003, 2, 213-232.
(7) Sieghart, W.; Sperk, G. Curr. Top. Med. Chem. 2002, 2, 795-
816.
(8) Rudolph, U.; Crestani, F.; Benke, D.; Bru¨nig, I.; Benson, J. A.;
Fritschy, J.-M.; Martin, J. R.; Bluethmann, H.; Mo¨hler, H.
Benzodiazepine Actions Mediated by Specific γ-Aminobutyric
acidA Receptor Subtypes. Nature 1999, 401, 796-800.
(9) McKernan, R. M.; Rosahl, T. W.; Reynolds, D. S.; Sur, C.;
Wafford, K. A.; Atack, J. R.; Farrar, S.; Myers, J.; Cook, G.;
Ferris, P.; Garrett, L.; Bristow, L.; Marshall, G.; Macaulay, A.;
Brown, N.; Howell, O.; Moore, K. W.; Carling, R. W.; Street, L.
J.; Castro, J. L.; Ragan, C. I.; Dawson, G. R.; Whiting, P. J.
Sedative but not Anxiolytic Properties of Benzodiazepines are
Mediated by the GABAA Receptor R1 Subtype. Nature Neurosci.
2000, 3, 587-592.