10.1002/chem.201805208
Chemistry - A European Journal
COMMUNICATION
[5]
[6]
M. Eriksson, A. Hjelmencrantz, M. Nilsson, T. Olsson, Tetrahedron
1995, 51, 12631–12644.
Experimental Section
K. Takai, T. Ueda, H. Kaihara, Y. Sunami, T. Moriwake, J. Org. Chem.
1996, 61, 8728–8729.
General procedure of tandem reactions
[7]
[8]
[9]
Y. Li, Q. Wang, A. Goeke, G. Fráter, Synlett 2007, 288–292.
S. P. Miller, J. P. Morken, Org. Lett. 2002, 4, 2743–2745.
K. C. Wong, E. Ng, W-T. Wong, P. Chiu, Chem. Eur. J. 2015, 22,
3709–3712.
In a 20 mL septum-capped vial equipped with a magnetic stirring bar,
starting ester (1.0 mmol) and I (10 mg, 0.02 mmol, 2.0 mol%) was
dissolved in 8 mL of technical grade, “wet” toluene. The reaction was
stirred for 1 hour (this step is not required for the 2-step cascade). Then
the mixture was cooled to 0°C with an ice/water bath. Et3SiH (176 mg,
1.5 mmol, 1.5 equiv.) was added dropwise via syringe. The reaction was
left to warm to room temperature and stirred overnight. After completion,
TBAF (2 equiv.) was added and the reaction was stirred for 15 minutes.
Then 8 mL 10% HCl solution was added and the mixture was stirred for
15 minutes. The phases were separated and the water phase was
extracted with 2x5 mL of toluene. The organic phases were collected and
dried on Na2SO4. Solvent was evaporated, and crude product was
purified with flash chromatography (eluent: hexanes/EtOAc/acetic acid:
100/10/1) to obtain the desired carboxylic acid.
[10] For recent review on borane-catalyzed hydrosilylations, see: M.
Oestreich, J. Hermeke, J. Mohr, Chem. Soc. Rev. 2015, 44, 2202–2220.
[11] a) Á. Gyömöre, M. Bakos, T. Földes, I. Pápai, A. Domján, T. Soós, ACS
Catal. 2015, 5, 5366–5372; b) M. Bakos, Á. Gyömöre, A. Domján, T.
Soós, Angew. Chem. 2017, 129, 5301–5305; Angew. Chem. Int. Ed.
2017, 56, 5217–5221; c) É. Dorkó, M. Szabó, B. Kótai, I. Pápai, A.
Domján, T. Soós Angew. Chem. 2017, 129, 9640-9644; Angew. Chem.
Int. Ed. 2017, 56, 9512–9516.
[12] D. Fegyverneki, Á. Gyömöre, O. Egyed, T. Soós, Org. Lett. manuscript
submitted.
[13] See Supporting Information for details.
[14] For some selected examples, see: a) N. Marion, R. Gealageas, S. P.
Nolan, Org. Lett. 2007, 14, 2653–2656; b) L. M. Stanley, C. Bai, M.
Ueda, J. F. Hartwig, J. Am. Chem. Soc. 2010, 26, 8918–8920; c) A.
Serra-Muns, A. Guérenot, S. Raymond, J. Cossy, Chem. Comm. 2010,
46, 4178–4180.
Acknowledgements
[15] [1,3]-Claisen rearrangement can also occur via ionic intermediates: a) P.
A. Grieco, J. D. Clark, C. T. Jagoe, J. Am. Chem. Soc. 1991, 113,
5488–5489; b) M. T. Reetz, A. Gansäuer, Tetrahedron 1993, 49, 6025–
6030; c) A. Gansäuer, D. Fielenbach, C. Stock, Adv. Synth. Catal. 2002,
344, 845–848.
This work was supported by the National Research,
Development and Innovation Office (K-116150). We are grateful
for the technical support from Servier Research Institute of
Medicinal Chemistry.
[16] Recent theoretical work on B(C6F5)3 initiation in Si-H chemistry: S.
Banerjee, K. Vanka, ACS Catal. 2018, 8, 6163–6176.
Keywords: sigmatropic rearrangement • boranes • silanes •
Ireland-Claisen • diastereoselectivity
[17] Evidence that protons can be the active catalyst (hidden Brønsted
catalysis) in metal triflates mediated reactions, see: a) R. Dumeunier, I.
E. Markó, Tetrahedron Lett. 2004, 45, 825–829; b) T. C. Wabnitz, J.-Q.
Yu, J. B. Spencer, Chem. Eur. J. 2004, 10, 484-493; c) D. C. Rosenfeld,
S. Shekhar, A. Takemiya, M. Utsunomiya, J. F. Hartwig, Org. Lett. 2006,
8, 4179–4182; T. T. Dang, F. Boeck, L. Hintermann, J. Org. Chem.
2011, 76, 9353–9361.
[1]
The Claisen rearrangement (Eds.: M. Hiersemann, U. Nubbemeyer),
Wiley-VCH, Weinheim, 2007. For a selected review, see: A. M. M
Castro, Chem. Rev. 2004, 104, 2939–3002
[2]
[3]
a) R. Ireland, R. Mueller, J. Am.Chem. Soc. 1972, 94, 5897-5898; b) R.
Ireland, R. Mueller, A. Willar, J. Am. Chem. Soc. 1976, 98, 2868-2877.
For metal-catalyzed partial reduction of esters, see: (a) M. Igarashi, R.
Mizuno, T. Fuchikami, Tetrahedron Lett. 2001, 42, 2149–2151. (b) C.
Cheng, M. Brookhart, Angew. Chem. 2012, 124, 9556–9558; Angew.
Chem. Int. Ed. 2012, 51, 9422–9424. (c) H. Li, L. C. Misal Castro, J.
Zheng, T. Roisnel, V. Dorcet, J-B. Sortais, C. Darcel, Angew. Chem.
2012, 125, 8203-8207; Angew. Chem. Int. Ed. 2013, 52, 8045–8049.
(d) X. Tan, Y. Wang, Y. Liu, F. Wang, L. Shi, K-H. Lee, Z. Lin, H. Lv, X.
Zhang, Org. Lett. 2015, 17, 454–457. (e) Y. Corre, Y. Rysak, F. Capet,
J. Djukic, F. Agbossou-Niedercorn, C. Michon, Chem. Eur. J. 2016, 22,
[18] The aqua complex of the analog Lewis acid B(C6F5)3 II is reported to
function as a potent Brønsted acid. The acidity of H2O-B(C6F5)3 is
comparable to HCl (pKa=8.4 (MeCN)). C. Bergquist, B. M. Bridgewater,
C. J. Harlan, J. R. Norton, R. A. Friesner, G. Parkin, J. Am. Chem. Soc.
2000, 122, 10581–10590. Recent catalytic application of B(C6F5)3 II
exploiting both Lewis acid and Brønsted catalysis (via aqua complex),
M. Shibuya, M. Okamoto, S. Fujita, M. Abe, Y. Yamamoto, ACS Catal.
2018, 8, 4189–4193.
[19] Reviews on B(C6F5)3: a) G. Erker, Dalton Trans. 2005,1883–1890; b) D.
W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2015, 54, 6400–6441.
14036–14041. (f)
A review on hydrosilylation of carboxylic acid
derivatives: D. Addis, S. Das, K. Junge, M. Beller, Angew. Chem. 2011,
123, 6128–6135; Angew. Chem. Int. Ed. 2011, 50, 6004–6011.
Y. Aoki, I. Kuwajima, Tetrahedron Lett. 1990, 31, 7457–7460.
[4]
This article is protected by copyright. All rights reserved.