10.1002/anie.202001015
Angewandte Chemie International Edition
COMMUNICATION
18, 6102–6104. l) L. Li, C. Ni, F. Wang, J. Hu, Nat. Commun. 2016, 7,
13320. m) J. Guo, C. Kuang, J. Rong, L. Li, C. Ni, J. Hu, Chem. Eur. J.
2019, 25, 7259–7264. n) F. J. A. Troyano, F. Ballaschk, M. Jaschinski,
Y. Özkaya, A. Gómez-Suárez, Chem. Eur. J. 2019, 25, 14054–14058.
a) V. H. Jadhav, H. J. Jeong, W. Choi, D. Kim, Chem. Eng. J. 2015, 270,
36–40. b) H. Dang, M. Mailig, G. Lalic, Angew. Chem. Int. Ed. 2014, 53,
6473–6476; Angew. Chem. 2014, 126, 6591 –6594. c) S. S. Shinde, B.
S. Lee, D. Y. Chi, Org. Lett. 2008, 10, 733–735. d) D. W. Kim, C. E. Song,
A. Y. Chi, J. Am. Chem. Soc. 2002, 35, 10278–10279.
Keywords: copper • deoxyfluorination • fluorine • PET •
radiolabeling
[1]
For selected reviews on the installation and use of C–F bonds, see: (a)
Fluoropolymers In Topics in Applied Chemistry (Eds.: G. Hougham, P. E.
Cassidy, K. Johns, T. Davidson), Kluwer Academic Publishers: New York
City, 2002. b) P. Jeschke, ChemBioChem 2004, 5, 571–589. c) K. Müller,
C. Faeh, F. Diederich, Science 2007, 317, 1881–1886. d) K. L. Kirk, Org.
Process Res. Dev. 2008, 12, 305–321. e) S. Purser, P. R. Moore, S.
Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320–330. f) W. K.
Hagmann, J. Med. Chem. 2008, 51, 4359–4369. g) J. Wang, M.
Sánchez-Roselló, J. L. Aceña, C. del Pozo, A. E. Sorochinsky, S. Fustero,
V. A. Soloshonok, H. Liu, Chem. Rev. 2014, 114, 2432–2506. h) E. A.
Ilardi, E. Vitaku, J. T. Njardarson, J. Med. Chem. 2014, 57, 2832–2842.
i) E. P. Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly, N. A. Meanwell,
J. Med. Chem. 2015, 58, 8315–8359.
[6]
[7]
[8]
a) G. Pupo, F. Ibba, D. M. H. Ascough, A. C. Vicini, P. Ricci, K. E.
Christensen, L. Pfeifer, J. R. Morphy, J. M. Brown, R. S. Paton, V.
Gouverneur, Science 2018, 360, 638–642. b) G. Pupo, A. C. Vicini, D. M.
H. Ascough, F. Ibba, K. E. Christensen, A. L. Thompson, J. M. Brown, R.
S. Paton, V. Gouverneur, J. Am. Chem. Soc. 2019, 141, 2878–2883.
a) P. Tang, T. Furuya, T. Ritter, J. Am. Chem. Soc. 2010, 132, 12150–
12154. b) M. H. Katcher, A. G. Doyle, J. Am. Chem. Soc. 2010, 132,
17402–17404. c) M. H. Katcher, A. Sha, A. G. Doyle, J. Am. Chem. Soc.
2011, 133, 15902–15905. d) W. Liu, X. Huang, M.-J. Cheng, R. J. Nielsen,
W. A. Goddard III, J. T. Groves, Science 2012, 337, 1322−1325. e) M.-
G. Braun, M. H. Katcher, A. G. Doyle, Chem. Sci. 2013, 4, 1216–1220. f)
T. Truong, K. Klimovica, O. Daugulis, J. Am. Chem. Soc. 2013, 135,
9342–9345.
[2]
a) D. O’Hagan, Chem. Soc. Rev. 2008, 37, 308–319. b) D. Y.
Buissonneaud, T. van Mourik, D. O’Hagan, Tetrahedron 2010, 66, 2196–
2202. c) L. E. Zimmer, C. Sparr, R. Gilmour, Angew. Chem. Int. Ed. 2011,
50, 11860–11871; Angew. Chem. 2011, 123, 12062–12074. d) Q. A.
Huchet, B. Kuhn, B. Wagner, N. A. Kratochwil, H. Fisher, M. Kansy, D.
Zimmerli, E. M. Carreira, K. Müller, J. Med. Chem. 2015, 58, 9041–9060.
e) C. Thiehoff, Y. P. Rey, R. Gilmour, Isr. J. Chem. 2017, 57, 92–100. f)
M. Aufiero, R. Gilmour, Acc. Chem. Res. 2018, 51, 1701–1710.
For reviews on deoxyfluorination, see: a) C. Hollingworth, V. Gouverneur,
Chem. Commun. 2012, 48, 2929–2942. b) T. Liang, C. N. Neumann, T.
Ritter, Angew. Chem. Int. Ed. 2013, 52, 8214–8264; Angew. Chem. 2013,
125, 8372 – 8423. c) J. Wu, Tetrahedron Lett. 2014, 55, 4289−4294. d)
P. A. Champagne, J. Desroches, J. D. Hamel, M. Vandamme, J. F.
Paquin, Chem. Rev. 2015, 115, 9073–9174. e) W.-L. Hu, X.-G. Hu, L.
Hunter, Synthesis 2017, 49, 4917–4930. f) R. P. Singh, J. M. Shreeve,
Synthesis 2002, 17, 2561–2578. h) C. Ni, M. Hu, J. Hu, Chem. Rev. 2015,
115, 765−825.
[9]
For examples of the use of bespoke Cu complexes, see: a) Y. Liu, C.
Chen, H. Li, K.-W. Huang, J. Tan, Z. Weng, Organometallics 2013, 32,
6587–6592. b) Z. Liu, H. Chen, Y. Lv, X. Tan, H. Shen, H.-Z. Yu, C. Li, J.
Am. Chem. Soc. 2018, 140, 6169–6175.
[3]
[10] For the use of CuF2 in arene fluorination, see: M. A. Subramanian, L. E.
Manzer, Science 2002, 297, 1665.
[11] For examples, see: a) L. Chu, X. Yue, F.-L. Qing, Org. Lett. 2010, 12,
1644–1647. b) C. Czekelius, E. M. Carreira, Org. Lett. 2004, 6, 4575–
4577. c) J. Zhang, Y. Hou, Y. Ma, M. Szostak, J. Org. Chem. 2019, 84,
338−345.
[12] a) L. J. Mathias, Synthesis 1979, 561–567. b) A. Chighine, S. Crosignani,
M.-C. Arnal, M. Bradley, B. Linclau, J. Org. Chem. 2009, 74, 4753–4762.
c) Z. Li, S. Crosignani, B. Linclau, Tetrahedron Lett. 2003, 44, 8143–8147.
[13] L. Pfeifer, K. M. Engle, G. W. Pidgeon, H. A. Sparkes, A. L. Thompson,
J. M. Brown, V. Gouverneur, J. Am. Chem. Soc. 2016, 138, 13314–
13325.
[4]
[5]
a) J. Emsley, Chem. Soc. Rev. 1980, 9, 91–124. b) X. Chen, J. I.
Brauman, J. Am. Chem. Soc. 2008, 130, 15038–15046. c) C. L. Liotta,
H. P. Harris, J. Am. Chem. Soc. 1974, 96, 2250–2252. d) J. H. Clark,
Chem. Rev. 1980, 80, 429–452. e) C. N. Neumann, T. Ritter, Angew.
Chem. Int. Ed. 2015, 54, 3216–3221; Angew. Chem. 2015, 127, 3261–
3267.
[14] For examples, see: a) R. B. Penland, S. Mizushima, C. Curran, J. V.
Quagliano, J. Am. Chem. Soc. 1957, 79, 1575–1578. b) M. Kishita, M.
Inoue, M. Kubo, Inorg. Chem. 1964, 3, 237–239.
a) N. N. Yarovenko, M. A. Raksha, V. N. Shemanina, A. S. Vasileva, Zh.
Obshch. Khim. 1957, 27, 2246–2250. b) W. R. Hasek, W. C. Smith, V. A.
Engelhardt, J. Am. Chem. Soc. 1960, 82, 543–551. c) W. J. Middleton, J.
Org. Chem. 1975, 40, 574–578. d) A. Takaoka, K. Iwamoto, T. Kitazume,
N. Ishikawa, J. Fluorine Chem. 1979, 14, 421–428. e) B. Bennua-
Skalmowski, H. A. Vorbrüggen, Tetrahedron Lett. 1995, 36, 2611–2614.
f) G. S. Lal, G. P. Pez, R. J. Pesaresi, F. M. Prozonic, H. Cheng, J. Org.
Chem. 1999, 64, 7048–7054. g) F. Beaulieu, L.-P. Beauregard, G.
Courchesne, M. Couturier, F. LaFlamme, A. L’Heureux, Org. Lett. 2009,
11, 5050–5053. h) T. Umemoto, R. P. Singh, Y. Xu, N. Saito, J. Am.
Chem. Soc. 2010, 132, 18199–18205. i) F. Sladojevich, S. I. Arlow, P.
Tang, T. Ritter, J. Am. Chem. Soc. 2013, 135, 2470–2473. j) M. K.
Nielsen, C. R. Ugaz, W. Li, A. G. Doyle, J. Am. Chem. Soc. 2015, 137,
9571–9574. k) N. W. Goldberg, X. Shen, J. Li, T. Ritter, Org. Lett. 2016,
[15] For selected reviews, see: a) M. J. Adam, D. S. Wilbur, Chem. Soc. Rev.
2005, 34, 153–163. b) L. Cai, S. Lu, V. W. Pike, Eur. J. Org. Chem. 2008,
2853–2873. c) S. L. Pimlott, A. Sutherland, Chem. Soc. Rev. 2011, 40,
149–162. d) M. G. Campbell, T. Ritter, Chem. Rev. 2015, 115, 612–633.
[16] During this proof of concept study, the use of more forcing conditions was
briefly examined. However, this led to complex mixtures of products.
While the relatively mild conditions reported in Scheme 3 do require an
overall reaction time of 1 h, they form the product cleanly, in an efficient
RCY.
[17] O. Jacobson, D. O. Kiesewetter, X. Chen, Bioconjugate Chem. 2015, 26,
1–18.
[18] C. M. Wheeler Jr, H. M. Haendler, J. Am. Chem. Soc. 1954, 76, 264–264.
This article is protected by copyright. All rights reserved.