A R T I C L E S
Casey et al.
Scheme 1. Simplified Mechanism for Styrene Hydroformylation
with [2S,4S-BDPP]Pt(SnCl3)Cl Catalyst
followed by irreversible alkyl migration to CO to form a
platinum acyl complex, or (4) reversible platinum acyl formation
followed by irreversible platinum acyl hydrogenolysis to yield
the aldehyde and regenerate the active platinum hydride, as
shown in Scheme 1.
Here, we report deuterioformylation studies and the CO and
H2 pressure dependence of enantioselectivity which show that
at low temperature, enantioselectivity is set by largely irrevers-
ible platinum hydride addition to styrene, but at high temper-
ature, platinum hydride addition is reversible and enantioselec-
tivity is set by a combination of partially reversible alkyl
migration to CO and hydrogenolysis of the platinum acyl
intermediate.
Experimental Section
may be set at any one of four stages: (1) irreversible alkene
coordination to platinum, (2) reversible alkene coordination
followed by irreversible platinum hydride addition to form a
platinum alkyl complex, (3) reversible platinum alkyl formation
Hydroformylation of Styrene at Variable Pressures of H2 and
CO. Hydroformylations were performed in a 25 mL stainless steel Parr
reactor equipped with a magnetic drive stirrer, a Parr 4842 thermo-
couple, and a ReactIR SiComp cell. Each hydroformylation experiment
was performed using octane (0.1 g; 0.875 mmol) as an internal standard
for GC analysis. The reactor containing catalyst 1 (20 mg; 0.022 mmol),
toluene (6.0 mL), and octane was sealed under 1 atm of N2. The reactor
was then heated to the appropriate temperature, and then pressurized
with the respective pressures of CO and H2. Styrene (1.50 g; 14.4 mmol)
was then added via a stainless steel addition funnel by overpressurizing
with N2. Aldehyde formation was monitored at 1730 cm-1 using a ASI
ReactIR 1000. When it appeared that the absorbance of the aldehyde
leveled out, the reaction was stopped; the reactor was slowly vented
and then cooled to room temperature. The average pressure loss during
the reactions was ∼250 psi of synthesis gas. The sample was then
analyzed by GC and 1H NMR spectroscopy. Gas chromatography was
performed using a Supelco â-Dex (â-cyclodextrin) 250 chiral capillary
column on a Hewlett-Packard 5890A gas chromatograph connected to
an HP3390A integrator. The GC flow rate was set to 75 mL/min N2,
an initial temperature of 100 °C (13 min) followed by ramping 30 °C/
min to 210 °C. Typical retention times were as follows: 2.20 min
octane, 2.39 min toluene, 3.08 min ethylbenzene, 3.58 min styrene,
12.48 min (R)-2-phenylpropanal, 12.70 min (S)-2-phenylpropanal, and
15.24 min 3-phenylpropanal. The response factors (calculated by
correlating the moles of internal standard to its corresponding peak
area) for ethylbenzene (1.15), styrene (1.06), 2-phenylpropanal (1.02),
and 3-phenylpropanal (1.07) were calibrated relative to octane using
standards of commercial samples.
(10) The exact coordination environments of the platinum hydride, alkyl, and
acyl complexes are unknown.
(11) References for the use of Pt-SnCl2 catalysts in hydroformylation, see: (a)
Fernandez, D.; Garcia-Seijo, M. I.; Kegl, T.; Petocz, G.; Kolla´r, L.; Garcia-
Fernandez, M. E. Inorg. Chem. 2002, 41, 4435. (b) Foca, C. M.; dos Santos,
E. N.; Gusevskaya, E. V. J. Mol. Catal. A 2002, 185, 17. (c) van der Veen,
L. A.; Keevan, P. K.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Dalton
2000, 13, 2105. (d) Gusevskaya, E. V.; dos Santos, E. N.; Augusti, R.;
Dias, A. d. O.; Foca, C. M. J. Mol. Catal. A 2000, 152, 15. (e) Ellis, D.
D.; Harrison, G.; Orpen, A. G.; Phetmung, H.; Pringle, P. G.; deVries, J.
G.; Oevering, H. Dalton 2000, 5, 671. (f) van der Veen, L. A.; Keevan, P.
K.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Chem. Commun. 2000, 5,
333. (g) Meessen, P.; Vogt, D.; Keim, W. J. Organomet. Chem. 1998, 551,
165. (h) Gladiali, S.; Fabbri, D.; Kolla´r, L. J. Organomet. Chem. 1995,
491, 91. (i) Ancillotti, F.; Lami, M.; Marchionna, M. J. Mol. Catal. 1991,
66, 37. (j) Consiglio, G.; Nefkens, S. C. A.; Borer, A. Organometallics
1991, 10, 2046. (k) Ancillotti, F.; Lami, M.; Marchionna, M. J. Mol. Catal.
1990, 63, 15. (l) Muller, G.; Sainz, D.; Sales, J. J. Mol. Catal. 1990, 63,
173. (m) Consiglio, G.; Nefkens, S. C. A. Tetrahedron: Asymmetry 1990,
1, 417. (n) Ancillotti, F.; Lami, M.; Marchionna, M. J. Mol. Catal. 1990,
58, 331. (o) Kolla´r, L.; Bakos, J.; Heil, B.; Sandor, P.; Szalontai, G. J.
Organomet. Chem. 1990, 385, 147. (p) Ancillotti, F.; Lami, M.; Marchionna,
M. J. Mol. Catal. 1990, 58, 345. (q) Scrivanti, A.; Paganelli, S.; Matteoli,
U.; Botteghi, C. J. Organomet. Chem. 1990, 385, 439. (r) Mutez, S.;
Paumard, E.; Morteux, A.; Petit, F. Tetrahedron Lett. 1989, 30, 5759. (s)
Kolla´r, L.; Consiglio, G.; Pino, P. J. Organomet. Chem. 1987, 330, 305.
(t) Moretti, G.; Botteghi, C.; Toniolo, L. J. Mol. Catal. 1987, 39, 177. (u)
Consiglio, G.; Morandini, F.; Scalone, M.; Pino, P. J. Organomet. Chem.
1985, 279, 193. (v) Clark, H. C.; Jain, V. K.; Rao, G. S. J. Organomet.
Chem. 1985, 279, 181. (w) Cavinato, G.; Toniolo, L. J. Organomet. Chem.
1983, 241, 275. (x) Tang, S.; Kim, L. J. Mol. Catal. 1982, 14, 231. (y)
Hayashi, T.; Kawabata, Y.; Isoyama, T.; Ogata, I. Bull. Chem. Soc. Jpn.
1981, 54, 3438. (z) Clark, H. C.; Davies, J. A. J. Organomet. Chem. 1981,
213, 503. (aa) Kawabata, Y.; Hayashi, T.; Ogata, I. J. Chem. Soc., Chem.
Commun. 1979, 10, 462. (ab) Consiglio, G.; Pino, P. HelV. Chim. Acta
1976, 59, 642 and references therein. For references specifically dealing
with the study of reaction intermediates in the hydroformylation of Pt-
SnCl2 catalysts, see: (a) Scrivanti, A.; Zeggio, S.; Beghetto, V.; Matteoli,
U. J. Mol. Catal. A 1995, 101, 217. (b) Cavinato, G.; Munno, G. De; Lami,
M.; Marchionna, M.; Toniolo, L.; Viterbo, D. J. Organomet. Chem. 1994,
466, 277. (c) Gomez, M.; Muller, G.; Sainz, D.; Sales, J.; Solans, X.
Organometallics 1991, 10, 4036. (d) Graziani, R.; Cavinato, G.; Casellato,
U.; Toniolo, L. J. Organomet. Chem. 1988, 353, 125. (e) Scrivanti, A.;
Botteghi, C.; Toniolo, L.; Berton, A. J. Organomet. Chem. 1988, 344, 261.
(f) Scrivanti, A.; Berton, A.; Toniolo, L.; Botteghi, C. J. Organomet. Chem.
1986, 314, 369. (g) Scrivanti, A.; Cavinato, G.; Toniolo, L.; Botteghi, C.
J. Organomet. Chem. 1985, 286, 115. (h) Bardi, R.; Piazzesi, A. M.;
Cavinato, G.; Cavoli, P.; Toniolo, L. J. Organomet. Chem. 1982, 224, 407
and references therein. For references with the role of SnCl2 in Pt-SnCl2
hydroformylation catalysts, see: (a) Rocha, W. R.; De Almeida, W. B.
Int. J. Quantum Chem. 1997, 65, 643. (b) Kolla´r, L.; Kegl, T.; Bakos, J. J.
Organomet. Chem. 1993, 453, 155. (c) Kolla´r, K.; Sandor, P.; Szalontai,
G.; Heil, B. J. Organomet. Chem. 1990, 393, 153. (d) Ruegg, H. J.;
Pregosin, P. S.; Scrivanti, A.; Toniolo, L.; Botteghi, C. J. Organomet. Chem.
1986, 316, 233. (e) Anderson, G. K.; Clark, H. C.; Davies, J. A. Inorg.
Chem. 1983, 22, 427. (f) Anderson, G. K.; Clark, H. C.; Davies, J. A.
Inorg. Chem. 1983, 22, 434. (g) Anderson, G. K.; Billard, C.; Clark, H.
C.; Davies, J. A.; Wong, C. S. Inorg. Chem. 1983, 22, 439 and references
therein. For studies of CO effect on Pt-SnCl2 hydroformylation catalysts,
see: (a) To´th, I.; Kegl, T.; Elsevier, C. J.; Kolla´r, L. Inorg. Chem. 1994,
33, 5708. (b) Goel, A. B.; Goel, S. Inorg. Chim. Acta 1983, 77, L53 and
references therein. For temperature-dependent studies of Pt-SnCl2 catalysts,
see: To´th, I.; Guo, I.; Hanson, B. E. Organometallics 1993, 12, 848 and
references therein.
Results
Hydroformylation of Styrene at 40 °C. The hydroformy-
lation of styrene catalyzed by [(2S,4S)-BDPP]Pt(SnCl3)Cl (1)
was performed at 40 °C with 1000 psi of an analyzed 1:1
mixture of H2:CO to confirm Kolla´r’s earlier results7 and to
establish a reference for deuterioformylation studies under our
experimental conditions. After 5% conversion of styrene, chiral
GC analysis showed formation of 3-phenylpropanal (3) and
2-phenylpropanal (2) [n:i ) 2.2 and 60% ee (S)-2-phenylpro-
panal (2-(S))]. Under similar reaction conditions, Kolla´r found
n:i ) 1.35 and 64% ee 2-(S)12 (Scheme 2).
Deuterioformylation of Styrene at 39 °C. To determine
whether platinum hydride addition to coordinated styrene is
reversible, a deuterioformylation experiment was conducted. If
hydride addition is irreversible, deuterium will be incorporated
(12) Peak assignments for (R)- and (S)-2-phenylpropanal were confirmed by
oxidation to the respective acids and subsequent derivitization to the (S)-
methyl mandelate esters. Esters (R,S)-4 and (S,S)-4 are distinguishable by
1H NMR spectroscopy.
9
5586 J. AM. CHEM. SOC. VOL. 126, NO. 17, 2004