LETTER
One-Pot Stereoselective Synthesis of Pyrano[3,2-c]benzothiopyrans
471
Acknowledgment
Table 2 Reactions of Thiosalicylaldehydes with BF3·OEt2
We are sincerely grateful to Dr. Hiroko Suezawa of Yokohama
National University, for carrying out NOE measurements. This
work was supported in part by a Grant-in-Aid for Scientific
Research (B) No. 09450339, 13555252, and Grant-in-Aid for
Scientific Research on Priority Areas No. 14044029 from the
Ministry of Education, Science, Sport and Culture, Japan.
Entry
1
2
Conditions
r.t., 15 min
r.t., 50 min
r.t., 2 h
Product
4a
Yield (%)
1
2
3
4
5
6
1b
1b
1b
1c
1c
1c
2a
2b
2c
2a
2b
2c
96
66
50
95
90
89
4b
4c
r.t., 30 min
r.t., 40 min
r.t., 60 min
4a
References
4b
(1) (a) Ellis, G. P.; Lockhart, I. M. In Chromans and
Tocopherols, Vol. 36; John Wiley and Sons: New York,
1981, 1–58. (b) Cinganek, E. In Organic Reactions, Vol. 32;
Dauben, W. G., Ed.; John Wiley and Sons: New York, 1984,
79. (c) Ingal, A. H. In Comprehensive Heterocyclic
Chemistry, Vol. 3; Boulton, A. S.; Mckillop, A., Eds.;
Pergamon Press: Oxford, 1984, 773. (d) Talley, J. J. J. Org.
Chem. 1985, 50, 1695. (e) Hepworth, J. D.; Heron, B. M. In
Progress in Heterocyclic Chemistry, Vol. 15; Gribble, G.
W.; Joule, J. A., Eds.; Pergamon Press: Amsterdam, 2003,
360–384.
(2) (a) Boger, D. L.; Weinreb, S. M. In Hetero Diels–Alder
Methodology in Organic Synthesis; Academic Press: New
York, 1987, 193–197. (b) Boger, D. L.; Weinreb, S. M. In
Hetero Diels–Alder Methodology in Organic Synthesis;
Academic Press: New York, 1987, 225. (c) Inamoto, N.
Heteroat. Chem. 2001, 12, 183. (d) Okazaki, R.; Ishii, F.;
Inamoto, N. Bull. Chem. Soc. Jpn. 1978, 51, 309.
(3) (a) Kaye, P. T.; Nocanda, X. W. Synthesis 2001, 2389.
(b) Katritzky, A. R.; Button, M. A. C. J. Org. Chem. 2001,
66, 5595. (c) Kumar, P.; Bodas, M. S. Tetrahedron 2001, 57,
9755. (d) Ram, V. J.; Agarwal, N.; Saxena, A. S.;
Farhanullah, S.; Sharon, A.; Maulik, P. R. J. Chem. Soc.,
Perkin Trans. 1 2002, 1426.
4c
yields were due to the recovery of 1b. It is worthwhile to
note that the reaction utilizing 1c and 2a–c lead to the
corresponding 4a–c, as single cyclic products in excellent
yields (Table 2, entries 4–6). In these intramolecular
cycloaddition reactions the Lewis acid served not only to
accelerate the reaction but also to promote the cleavage of
the protective groups, methoxymethyl or 2-tetrahydro-
pyranyl, furnishing ortho-thioquinonemethides.
In conclusion, we have described a trans stereoselective
synthesis of pyrano[3,2-c]benzothiopyrans from thio-
salicylaldehyde derivatives and unsaturated alcohols in
the presence of trimethyl orthoformate and acid catalyst
via intramolecular [4+2] cycloaddition of ortho-thio-
quinonemethides. We have also found that BF3·OEt2 is a
very effective acid catalyst for the generation and the
reaction of ortho-thioquinonemethides.
(4) Saito, T.; Horikoshi, T.; Otani, T.; Matsuda, Y.; Karakasa, T.
Tetrahedron Lett. 2003, 44, 6513.
(5) Wermuth, C. G. The Practice of Medicinal Chemistry;
Academic Press: London, 1996, 258.
(6) (a) Inoue, S.; Asami, M.; Honda, K.; Miyazaki, H. Chem.
Lett. 1996, 889. (b) Miyazaki, H.; Honda, K.; Asami, M.;
Inoue, S. J. Org. Chem. 1999, 64, 9507. (c) Miyazaki, H.;
Honda, Y.; Honda, K.; Inoue, S. Tetrahedron Lett. 2000, 41,
2643.
(7) For a review of ortho-thioquinonemethide see: Inoue, S.;
Honda, K. Kagaku Kogyo 2004, 55, 212; Journal written in
Japanese.
(8) (a) Arnoldi, A.; Carughi, M. Synthesis 1988, 155.
(b) Kasmai, H. S.; Mischke, S. G. Synthesis 1989, 763.
(c) Toste, F. D.; Lough, A. J.; Still, I. W. J. Tetrahedron Lett.
1995, 36, 6619. (d) Gallagher, T.; Pardoe, D. A.; Porter, R.
A. Tetrahedron Lett. 2000, 41, 5415.
General Procedure for the Cycloaddition Reactions
A flask was charged with alcohol (10 mmol), thiosalicyclaldehyde
derivative (12 mmol), and trimethyl orthoformate (12 mmol), and
then acid catalyst (2 mmol) was dropped into the reaction mixture.
The mixture was stirred at r.t. (or 80 °C, 110 °C) and monitored by
TLC. The reaction mixture was treated with 10% aq NaOH (in the
case of BF3·OEt2, the reaction was treated with H2O), and the organ-
ic layer was separated. The aqueous layer was extracted with Et2O,
and the combined organic layer was washed with brine, dried over
anhyd MgSO4, and concentrated in vacuo to give crude products,
which were purified by silica gel chromatography.
Compound 4b: 1H NMR (400 MHz, C6D6): d = 0.93 (m, 1 H), 1.10
(m, 1 H), 1.21 (s, 3 H), 1.22 (d, J = 6.1 Hz, 3 H), 1.32–1.46 (m, 2
H), 1.52–1.67 (m, 2 H), 1.57 (s, 3 H), 1.66 (s, 3 H), 1.97 (m, 1 H),
2.14 (m, 1 H), 2.33 (m, 1 H), 3.30 (dqd, J = 2.2, 6.1, 11.7 Hz, 1 H),
4.23 (d, J = 10.3 Hz, 1 H), 5.11 (tt, J = 1.5, 7.1 Hz, 1 H), 6.96 (ddd,
J = 1.5, 7.3, 7.8 Hz, 1 H), 7.00 (ddd, J = 1.5, 7.3, 7.8 Hz, 1 H), 7.17
(m, 1 H), 7.89 (dd, J = 1.5, 7.8 Hz, 1 H). 13C NMR (100 MHz,
C6D6): d = 18.0, 22.4, 23.1, 24.1, 24.9, 26.1, 33.8, 41.1, 44.1, 48.8,
74.0, 76.8, 124.3, 124.4, 126.7, 127.9, 128.1, 131.7, 133.0, 134.2.
Compound 4c: 1H NMR (400 MHz, C6D6): d = 1.00–1.06 (m, 2 H),
1.09 (s, 3 H), 1.22 (d, J = 6.1 Hz, 3 H), 1.34 (m, 1 H), 1.50–1.68 (m,
3 H), 1.52 (s, 3 H), 1.61 (s, 3 H), 2.02–2.08 (m, 2 H), 2.56 (m, 1 H),
3.31 (dqd, J = 2.2, 6.1, 11.7 Hz, 1 H), 4.30 (d, J = 10.3 Hz, 1 H),
5.06 (tt, J = 1.5, 7.1 Hz, 1 H), 6.90 (ddd, J = 1.5, 7.3, 7.8 Hz, 1 H),
6.98 (ddd, J = 1.5, 7.3, 7.8 Hz, 1 H), 7.12 (dd, J = 1.5, 7.8 Hz, 1 H),
7.85 (dd, J = 1.5, 7.8 Hz, 1 H). 13C NMR (100 MHz, C6D6): d = 17.7,
22.2, 23.6, 24.6, 24.8, 25.8, 34.0, 35.2, 48.3, 48.9, 74.0, 76.3, 124.4,
124.8, 126.3, 127.8, 128.8, 131.5, 133.3, 134.1.
(9) Compound 5a: 1H NMR (400 MHz, CDCl3): d = 1.21 (d, J =
6.1 Hz, 3 H), 1.45 (m, 1 H), 1.50 (s, 3 H), 1.71–1.80 (m, 2
H), 1.92 (m, 1 H), 2.47 (ddd, J = 2.9, 10.0, 11.5 Hz, 1 H),
3.42 (s, 3 H), 3.67 (dqd, J = 2.0, 6.1, 11.1 Hz, 1 H), 4.60 (m,
2 H), 4.85 (d, J = 11.2 Hz, 1 H), 4.93 (d, J = 11.2 Hz, 1 H),
4.95 (d, J = 10.0 Hz, 1 H), 7.21 (ddd, J = 1.7, 7.3, 7.6 Hz, 1
H), 7.23 (ddd, J = 1.5, 7.3, 7.6 Hz, 1 H), 7.43 (dd, J = 1.7, 7.6
Hz, 1 H), 7.56 (dd, J = 1.5, 7.6 Hz, 1 H). 13C NMR (100
MHz, CDCl3): d = 21.4, 22.2, 30.7, 33.7, 48.5, 56.1, 74.4,
78.6, 79.5, 112.3, 127.2, 127.6, 128.0, 131.6, 135.5, 141.4,
145.8.
(10) Compound 6 was purified by silica gel column
chromatography, and was characterized by NMR.
Synlett 2005, No. 3, 469–472 © Thieme Stuttgart · New York